数学物理学报 ›› 2025, Vol. 45 ›› Issue (2): 389-407.

• • 上一篇    下一篇

强耦合变系数波动方程的间接边界镇定

崔佳楠1,2(),柴树根1,*()   

  1. 1山西大学数学科学学院 太原 030006
    2晋中学院数学系 山西晋中 030619
  • 收稿日期:2024-05-28 修回日期:2024-10-30 出版日期:2025-04-26 发布日期:2025-04-09
  • 通讯作者: 柴树根 E-mail:1391958885@qq.com;sgchai@sxu.edu.cn
  • 作者简介:崔佳楠,E-mail:1391958885@qq.com
  • 基金资助:
    国家自然科学基金(12271316);晋中学院博士专项基金(23E00611)

Indirect Boundary Stabilization of Strongly Coupled Variable Coefficient Wave Equations

Jianan Cui1,2(),Shugen Chai1,*()   

  1. 1School of Mathematical Sciences, Shanxi University, Taiyuan 030006
    2Department of Mathematics, Jinzhong University, Shanxi Jinzhong 030619
  • Received:2024-05-28 Revised:2024-10-30 Online:2025-04-26 Published:2025-04-09
  • Contact: Shugen Chai E-mail:1391958885@qq.com;sgchai@sxu.edu.cn
  • Supported by:
    NSFC(12271316);Jinzhong University Research Funds for Doctor(23E00611)

摘要:

该文旨在研究带变系数和边界阻尼的强耦合波动方程的间接镇定. 值得注意的是, 系统中只有一个方程直接受到边界阻尼的影响. 利用黎曼几何方法和高阶能量方法, 证明了全局耦合系统的衰减速率受边界条件类型的影响. 研究结果表明, 当无阻尼方程具有 Dirichlet 边界条件时, 系统表现出指数稳定性, 而当无阻尼方程具有 Neumann 边界条件时, 系统仅有多项式稳定性. 最后, 在 Dirichlet 和 Neumann 边界条件下建立了局部耦合系统的指数稳定性.

关键词: 间接镇定, 强耦合, 非均匀介质, 边界反馈

Abstract:

In this paper, the indirect stabilization of strongly coupled wave equations with variable coefficients and boundary damping is studied. It is important to note that only one equation in the system is directly affected by boundary damping. By using Riemannian geometry method and higher order energy method, it is proved that the decay rate of the globally coupled system is affected by the type of boundary conditions. The results show that when the undamped equations have Dirichlet boundary conditions, the system exhibits exponential stability, while when the undamped equations have Neumann boundary conditions, the system has only polynomial stability. Finally, the exponential stability of the locally coupled system is established under Dirichlet and Neumann boundary conditions.

Key words: indirect stabilization, strong coupling, inhomogeneous media, boundary feedback

中图分类号: 

  • O231.4