[1] |
Ashbaugh M S, Benguria R D. Bounds for ratios of the first, second, and third membrane eigenvalues// Angell T, Pamela Cook L, Kleinman R, Olmstead W. Nonlinear Problems in Applied Mathematics. Philadelphia: Soc Indu Appl Math, 1996: 30-42
|
[2] |
Ashbaugh M S, Benguria R D. The range of values of λ2λ1 and λ3λ1 for the fixed membrane problem. Reviews in Mathematical Physics, 1994, 6(5a): 999-1009
|
[3] |
Faber G. Beweis, dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt// München Z. Sitzungsber Bayer Akad Wiss München Math-Phys KI, 1923: 169-172
|
[4] |
Brands J. Bounds for the ratios of the first three membrane eigenvalues. Archive for Rational Mechanics and Analysis, 1964, 16: 265-268
|
[5] |
Chavel I. Eigenvalues in Riemannian Geometry. Orlando: Academic Press, 1984
|
[6] |
Chen D G, Zheng T. Bounds for ratios of the membrane eigenvalues. Journal of Differential Equations, 2011, 250(3): 1575-1590
|
[7] |
Cheng Q M. Universal estimates for eigenvalues and applications// Proceedings of the 6th International Congress of Chinese Mathematicians. Advanced Lectures in Mathematics, 2016: 37-52
|
[8] |
Cheng Q M, Qi X. Inequalities for eigenvalues of the Laplacian. arXiv:1104.5298v1
|
[9] |
Cheng Q M, Yang H. Bounds on eigenvalues of Dirichlet Laplacian. Mathematische Annalen, 2007, 337(1): 159-175
|
[10] |
Hile G N, Protter M H. Inequalities for eigenvalues of the Laplacian. Indiana University Mathematics Journal, 1980, 29(4): 523-538
|
[11] |
Krahn E. Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises. Mathematische Annalen, 1925, 94(1): 97-100
|
[12] |
Levitin M, Parnovski L. Commutators spectral trace identities, and universal estimates for eigenvalues. J Funct Anal, 2002, 192(2): 425-445
|
[13] |
Lu W, Mao J, Wu C X, Zeng L Z. Eigenvalue estimates for the drifting Laplacian and the p-Laplacian on submanifolds of warped products. Applicable Analysis, 2021, 100(11): 2275-2300
|
[14] |
Payne L E, Pólya G, Weinberger H F. On the ratio of consecutive eigenvalues. Journal of Mathematical Physics, 1956, 35(1-4): 289-298
|
[15] |
Pólya G. On the eigenvalues of vibrating membranes. Proceedings of the London Mathematical Society, 1961, 11(3): 419-433
|
[16] |
Rosales C, Canete A, Bayle V, Morgan F. On the isoperimetric problem in Euclidean space with density. Calculus of Variations and Partial Differential Equations, 2008, 31(1): 27-46
|
[17] |
Thompson C J. On the ratio of consecutive eigenvalues in n-dimensions. Studies in Applied Mathematics, 1969, 48(3): 281-283
|
[18] |
Wei G F, Wylie W. Comparison geometry for the Bakry-Émery Ricci tensor. Journal of Differential Geometry, 2009, 83(2): 337-405
|
[19] |
Yang H C. An estimate of the difference between consecutive eigenvalues. International Centre for Theoretical Physics, 1991
|
[20] |
Zeng L Z, Sun H J. Eigenvalues of the drifting Laplacian on smooth metric measure spaces. Pacific J Math, 2022, 319(2): 439-470
|