[1] Bao X, Huang W H.Traveling curved front of bistable reaction-diffusion equations with delay. Electron J Differential Equations, 2015, 2015(254): 1-17 [2] Bao X, Liu J.Pyramidal traveling fronts in a nonlocal delayed diffusion equation. J Math Anal Appl, 2018, 463(1): 294-313 [3] Bao X, Wang Z C.Pyramidal traveling front of bistable reaction-diffusion equations with delay. Ann of Diff Eqs, 2014, 30: 127-136 [4] Gourley S A, So J H W, Wu J H. Nonlocality of reaction-diffusion equations induced by delay: biological modeling and nonlinear dynamics. J Math Sci, 2004, 124: 5119-5153 [5] Hamel F, Monneau R, Roquejoffre J M.Asymptotic properties and classification of bistable fronts with Lipschitz level sets. Discrete Contin Dyn Syst, 2006, 14(1): 75-92 [6] Kurokawa Y, Taniguchi M.Multi-dimensional pyramidal travelling fronts in the Allen-Cahn equations. Proc Roy Soc Edinburgh Sect A, 2011, 141(5): 1031-1054 [7] Ma S, Wu J.Existence uniqueness and asymptotic stability of traveling wavefronts in a non-local delayed diffusion equation. J Dynam Differential Equations, 2007, 19: 391-436 [8] Ninomiya H, Taniguchi M.Existence and global stability of traveling curved fronts in the Allen-Cahn equations. J Differential Equations, 2005, 213(1): 204-233 [9] Ninomiya H, Taniguchi M.Global stability of traveling curved fronts in the Allen-Cahn equations. Discrete Contin Dyn Syst, 2006, 15(3): 819-832 [10] Sheng W J.Time periodic traveling curved fronts of bistable reaction-diffusion equations in $\Bbb{R}^{N}$. Applied Mathematics Letters, 2016, 54: 22-30 [11] Sheng W J.Time periodic traveling curved fronts of bistable reaction-diffusion equations in $\Bbb{R}^{3}$. Annali di Matematica Pura ed Applicata, 2017, 196: 617-639 [12] Sheng W J, Li W T, Wang Z C.Multidimensional stability of V-shaped traveling fronts in the Allen-Cahn equation. Sci China Math, 2013, 56: 1969-1982 [13] Taniguchi M.An $(N\!-\!1)$-dimensional convex compact set gives an $N$-dimensional traveling front in the Allen-Cahn equation. SIAM J Math Anal, 2015, 47(1): 455-476 [14] Taniguchi M.Convex compact sets in $\Bbb{R}^{N-1}$ give traveling fronts of cooperation-diffusion system in $\Bbb{R}^{N}$. J Differential Equations, 2016, 260(5): 4301-4338 [15] Taniguchi M.Multi-dimensional traveling fronts in bistable reaction-diffusion equations. Discrete Contin Dyn Syst, 2012, 32: 1011-1046 [16] Taniguchi M.The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen-Cahn equations. J Differential Equations, 2009, 246(5): 2103-2130 [17] Taniguchi M.Traveling fronts of pyramidal shapes in the Allen-Cahn equations. SIAM J Math Anal, 2007, 39(1): 319-344 [18] Wang Z C.Cylindrically symmetric traveling fronts in periodic reaction-diffusion equations with bistable nonlinearity. Proc Roy Soc Edinburgh Sect A, 2015, 145(5): 1053-1090 [19] Wang Z C.Traveling curved fronts in monotone bistable systems. Discrete Contin Dyn Syst, 2012, 32(6): 2339-2374 [20] Wang Z C, Li W T, Ruan S.Entire solutions in bistable reaction-diffusion equations with nonlocal delayed nonlinearity. Trans Amer Math Soc, 2009, 361(4): 2047-2084 [21] Wang Z C, Li W T, Ruan S.Existence uniqueness and stability of pyramidal traveling fronts in reaction-diffusion systems. Sci China Math, 2016, 59: 1869-1908 [22] Wang Z C, Wu J.Periodic traveling curved fronts in reaction-diffusion equation with bistable time-periodic nonlinearity. J Differential Equations, 2011, 250(7): 3196-3229 |