[1] |
Arnold L. Random Dynamical Systems. Berlin: Springer-Verlag, 1998
|
[2] |
Akin E, Auslander J, Berg K. When is a transitive map chaotic? Convergence in Ergodic Theory and Probability. Berlin: De Gruyter, 1996: 25-40
|
[3] |
Auslander J, Yorke J A. Interval maps, factors of maps, and chaos. Tohoku Math J, 1980, 32(2): 177-188
|
[4] |
Baake M, Lenz D, Moody R V. Charaucterization of model sets by dynamical systems. Ergos Th and Dynam sys, 2007, 27(2): 341-382
|
[5] |
Cong N D. Topological Dynamics of Random Dynamical Systems. Oxford: Oxford Univ Press, 1997
|
[6] |
Crauel H. Random Probability Measures on Polish Spaces. London: Taylor and Francis, 2002
|
[7] |
Danilenko A I. Entropy theory from the orbital point of view. Monatsh Math, 2001, 134(2): 121-141
|
[8] |
Dooley A, Zhang G. Local Entropy Theory of a Random Dynamical System. Providence RI: Amer Math Soc, 2015
|
[9] |
Fuhrmann G, Gröger M, Lenz D. The structure of mean equicontinuous group actions. Israel Journal of Mathematics, 2022, 247: 75-123
|
[10] |
García-Ramos F. Weak forms of topological and measure theoretical equicontinuity: relationships with discrete spectrum and sequence entropy. Ergos Th and Dynam Sys, 2017, 37(4): 1211-1237
|
[11] |
Glasner S, Maon D. Rigidity in topological dynamics. Ergods Th and Dynam Sys, 1989, 9: 309-320
|
[12] |
Glasner E, Weiss B. Sensitive dependence on initial conditions. Nonlinearity, 1993, 6(6): 1067-1075
|
[13] |
Kakutani S. Random ergodic theorems and Markoff processes with a stable distribution. Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability. California: University of California Press, 1951, 247-261
|
[14] |
Kifer Y. Ergodic Theory of Random Transformations. Boston: Birkhäuser,986
|
[15] |
Kerr D, Li H. Ergodic Theory:Independence and Dichotomies. Switzerland: Springer, 2016
|
[16] |
Liu P D, Qian M. Smooth Ergodic Theory of Random Dynamical Systems. Berlin: Springer-Verlag, 1995
|
[17] |
Li J, Tu S, Ye X. Mean equicontinuity and mean sensitivity. Ergod Th Dynam Sys, 2015, 35(8): 2587-2612
|
[18] |
Ledrappier F, Walters P. A relativized variational principle for continuous transformations. J London Math Soc, 1977, 16(2): 568-576
|
[19] |
Ornstein D S, Weiss B. Entropy and isomorphism theorems for actions of amenable groups. J Analyse Math, 1987, 48: 1-141
|
[20] |
Rudolph D J, Weiss B. Entropy and mixing for amenable group actions. Ann of Math, 2000, 151(3): 1119-1150
|
[21] |
Rokholin V A. On the fundamental ideas of measure theory. Matematicheskii Sbornik, 1949, 67(1): 107-150
|
[22] |
Rokholin V A. Selected topics from the metric theory of dynamical systems. Uspekhi Matematicheskikh Nauk, 1949, 4(1): 57-128
|
[23] |
Schenk-Hoppé K R. Random dynamical systems in economics. Stochastics Dynamics, 2001, 1(1): 63-83
|
[24] |
Thouvenot J P. Quelques properties des systemes dynamiques que se decomposent en un produit de deux systemes dont l'un est un schema de Bernoulli. Israel J Math, 1975, 21: 177-207
|
[25] |
Ulam S M, Von Neumann J. Random ergodic theorems. Bull Amer Math Soc, 1945, 51:660
|
[26] |
Weiss B. Actions of Amenable Groups, Topics in Dynamics and Ergodic Theory. Cambridge: Cambridge Univ Press, 2003, 310: 226-262
|
[27] |
Zhu B, Huang X, Lian Y. The systems with almost Banach mean equicontinuity for Abelian group actions. Acta Mathematica Scientia, 2022, 42(3): 919-940
|