数学物理学报 ›› 2024, Vol. 44 ›› Issue (6): 1537-1549.
收稿日期:
2023-11-14
修回日期:
2024-04-29
出版日期:
2024-12-26
发布日期:
2024-11-22
通讯作者:
*孟志英, Email: mengzhy3@mail2.sysu.edu.cn
作者简介:
殷朝阳, Email: 基金资助:
Meng Zhiying1,*(),Yin Zhaoyang1,2()
Received:
2023-11-14
Revised:
2024-04-29
Online:
2024-12-26
Published:
2024-11-22
Supported by:
摘要:
该文主要研究了具有弱耗散项的 Camassa-Holm 的柯西问题在 Sobolev-Gevrey 空间的适定性. 首先, 证明了该方程的局部解析性和 Gevrey 正则性. 其次, 探究了解映射的连续性. 最后, 证明了解在 Gevrey 类 (
中图分类号:
孟志英, 殷朝阳. 具有弱耗散项的 Camassa-Holm 方程的解析性和整体 Gevrey 正则性[J]. 数学物理学报, 2024, 44(6): 1537-1549.
Meng Zhiying, Yin Zhaoyang. Global Gevrey Regularity and Analyticity of a Weakly Dissipative Camassa-Holm Equation[J]. Acta mathematica scientia,Series A, 2024, 44(6): 1537-1549.
[1] | Baouendi M S, Goulaouic C. Remarks on the abstract form of nonlinear Cauchy-Kovalevsky theorems. Comm Partial Differential Equations, 1977, 2(11): 1151-1162 |
[2] |
Camassa R, Holm D D. An integrable shallow water equation with peaked solitons. Phys Rev Lett, 1993, 71(11): 1661-1664
doi: 10.1103/PhysRevLett.71.1661 pmid: 10054466 |
[3] | Constantin A, Escher J. Global existence and blow-up for a shallow water equation. Ann Scuola Norm Sup Pisa Cl Sci (4), 1998, 26(2): 303-328 |
[4] | Constantin A, Escher J. Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation. Comm Pure Appl Math, 1998, 51(5): 475-504 |
[5] | Constantin A. Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann Inst Fourier (Grenoble), 2000, 50(2): 321-362 |
[6] | Constantin A. On the scattering problem for the Camassa-Holm equation. R Soc Lond Proc Ser A Math Phys Eng Sci, 2001, 457(2008): 953-970. |
[7] | Constantin A, Strauss W A. Stability of peakons. Comm Pure Appl Math, 2000, 53: 603-610 |
[8] | Chen R M, Gui G, Liu Y. On a shallow-water approximation to the Green-Naghdi equations with the Coriolis effect. Adv Math, 2018, 340: 106-137 |
[9] | Danchin R. A few remarks on the Camassa-Holm equation. Differential Integral Equations, 2001, 14(8): 953-988 |
[10] | Danchin R. A note on well-posedness for Camassa-Holm equation. J Differential Equations, 2003, 192(2): 429-444 |
[11] | Dika K E, Molinet L. Stability of multipeakons. Ann Inst H Poincare Anal Non Linéeaire, 2009, 26: 1517-1532 |
[12] | Deng W, Yin Z. On the Cauchy problem for a Camassa-Holm type equation with cubic and quartic nonlinearities. Monatsh Math, 2022, 198(2): 289-310 |
[13] | Deng W, Yin Z. Global conservative solution for a dissipative Camassa-Holm type equation with cubic and quartic nonlinearities. Appl Anal, 2023, 102(8): 2365-2379 |
[14] | Freire I L, Filho N S, Souza L C, Toffoli C E. Invariants and wave breaking analysis of a Camassa-Holm type equation withquadratic and cubic non-linearities. J Differ Equ, 2020, 269: 56-77 |
[15] | Freire I L. Wave breaking for shallow water models with time decaying solutions. J Differential Equations, 2020, 269(4): 3769-3793 |
[16] | Freire I L. Persistence and asymptotic analysis of solutions of nonlinear wave equations. J Evol Equ, 2024, 24(1): Article 6 |
[17] | Foias C, Temam R. Gevrey class regularity for the solutions of the Navier-Stokes equations. J Funct Anal, 1989, 87(2): 359-369 |
[18] | Gui G, Liu Y, Sun J. A nonlocal shallow-water model arising from the full water waves with the coriolis effect. J Math Fluid Mech, 2019, 21(2): 1-29 |
[19] | Gui G, Liu Y, Luo T. Model equations and traveling wave solutions for shallow-water waves with the coriolis effect. J Nonlinear Sci, 2019, 29(3): 993-1039 |
[20] | Guan C, Yin Z. Global weak solutions for a two-component Camassa-Holm shallow water system. J Funct Anal, 2011, 260: 1132-1154 |
[21] | Guo Y, Ye W, Yin Z. Ill-posedness for the cauchy problem of the Camassa-Holm equation in $B^{1}_{\infty,1}$. J Differential Equations, 2022, 327: 127-144 |
[22] | Guo Z, Liu X, Molinet L, Yin Z. Ill-posedness of the Camassa-Holm and related equations in the critical space. J Differential Equations, 2019, 266(2/3): 1698-1707 |
[23] | Guan C, Yin Z. Global existence and blow-up phenomena for an integrable two-component Camassa-Holm shallow water system. J Differential Equations, 2010, 248: 2003-2014 |
[24] | Himonas A A, Misioek G. Analyticity of the Cauchy problem for an integrable evolution equation. Math Ann, 2003, 327(3): 575-584 |
[25] | He H, Yin Z. The global Gevrey regularity and analyticity of a two-component shallow water system with higher-order inertia operators. J Differential Equations, 2019, 267(4): 2531-2559 |
[26] | Hu Q, Yin Z. Well-posedness and blow-up phenomena for a periodic two-component Camassa-Holm equation. Proc Roy Soc Edinb Sect, 2011, 141A: 93-107 |
[27] | Hu Q, Yin Z. Global existence and blow-up phenomena for a periodic 2-component Camassa-Holm equation. Monatsh Math, 2012, 165: 217-235 |
[28] | Johnson R S. Camassa-Holm, Korteweg-de Vries and related models for water waves. J Fluid Mech, 2002, 455: 63-82 |
[29] | Liu X. On the periodic Cauchy problem for a coupled Camassa-Holm system with peakons. Z Angew Math Phys, 2016, 67: 1-14 |
[30] | Levermore C D, Oliver M. Analyticity of solutions for a generalized Euler equation. J Differential Equations, 1997, 133(2): 321-339 |
[31] | Li J, Wu X, Yu Y, Zhu W. Non-uniform dependence on initial data for the Camassa-Holm equation in Besov spaces. J Differential Equations, 2020, 269: 8686-8700 |
[32] | Li J, Wu X, Yu Y, Zhu W. Non-uniform dependence on initial data for the Camassa-Holm equation in the critical besov space. J Math Fluid Mech, 2021, 23: Article 36 |
[33] | Li J, Yin Z. Remarks on the well-posedness of Camassa-Holm type equations in Besov spaces. J Differential Equations, 2016, 261(11): 6125-6143 |
[34] | Li J, Yu Y, Zhu W. Ill-posedness for the Camassa-Holm and related equations in Besov spaces. J Differential Equations, 2022, 306: 403-417 |
[35] | Lyons T. Particle trajectories in extreme Stokes waves over infinite depth. Discrete Contin Dyn Syst, 2014, 34(8): 3095-3107 |
[36] | Li Y, Olver P. Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation. J Differential Equations, 2000, 162(1): 27-63 |
[37] | Luo W, Yin Z. Gevrey regularity and analyticity for Camassa-Holm type systems. Ann Sc Norm Super Pisa Cl Sci (5), 2018, 18(3): 1061-1079 |
[38] | Meng Z, Yin Z. On the Cauchy problem for a weakly dissipative Camassa-Holm equation in critical Besov spaces. Appl Anal, 2023, 102(16): 4432-4449 |
[39] | Meng Z, Yin Z. Existence and uniqueness of the globally conservative solutions for a weakly dissipative Camassa-Holm equation in time weighted $H^1(\mathbb{R})$ space. J Math Phys, 2023, 64(10): 101509 |
[40] | Nirenberg L. An abstract form of the nonlinear Cauchy-Kowalewski theorem. J Differential Geometry, 1972, 6: 561-576 |
[41] | Ovsiannikov L V. Non-local Cauchy problems in fluid dynamics. Actes Congress Int Math Nice 3, 1970, 137-142 |
[42] | Ovsjannikov L V. Singular operator in the scale of Banach spaces. Dokl Akad Nauk SSSR, 1965, 163: 819-822 |
[43] | Ovsjannikov L V. A nonlinear Cauchy problem in a scale of Banach spaces. Dokl Akad Nauk SSSR, 200: 789-792 |
[44] | Rafael F, Barostichi A, Himonas A, Petronilho G. Autonomous Ovsyannikov theorem and applications to nonlocal evolution equations and systems. J Funct Anal, 2016, 270(1): 330-358 |
[45] | Rodríguez-Blanco G. On the Cauchy problem for the Camassa-Holm equation. Nonlinear Anal, 2001, 46(3): 309-327 |
[46] | Xu R, Yang Y. Local well-posedness and decay for some generalized shallow water equations. J Differential Equations, 2023, 367: 689-728 |
[47] | Ye W, Yin Z, Guo Y. The well-posedness for the Camassa-Holm type equations in critical Besov spaces ${B}^{1+\frac{1}{p}}_{p,1}$ with $1\leq p<+\infty$. J Differential Equations, 2023, 367: 729-748 |
[48] | Yan K, Yin Z. Analytic solutions of the Cauchy problem for two-component shallow water systems. Math Z, 2011, 269: 1113-1127 |
[49] | Zhang L, Liu B. On the Luo-Yin results concerning Gevrey regularity and analyticity for Camassa-Holm-type systems. Ann Sc Norm Super Pisa Cl Sci (5), 2020, 21: 1741-1744 |
[1] | 潘丽君, 吕顺, 翁莎莎. 耦合Aw-Rascle-Zhang模型的Riemann解及其稳定性[J]. 数学物理学报, 2024, 44(4): 885-895. |
[2] | 王可凤,由守科. 二维范德瓦尔斯气体磁流体绕凸拐角的超声流动[J]. 数学物理学报, 2023, 43(4): 1170-1178. |
[3] | 黎小丽,陈晓莉. 部分耗散的三维Boussinesq方程在静力平衡附近的稳定性和指数衰减[J]. 数学物理学报, 2023, 43(3): 754-770. |
[4] | 张明玉. 输运系数依赖温度的可压缩辐射流体解的整体存在性[J]. 数学物理学报, 2023, 43(2): 458-480. |
[5] | 侍迎春, 赖耕. 球对称 Chaplygin 气体相对论 Euler 方程组的奇性形成[J]. 数学物理学报, 2023, 43(2): 481-490. |
[6] | 肖常旺,郭飞. 一类半线性波动方程的适定性[J]. 数学物理学报, 2020, 40(6): 1568-1589. |
[7] | 张庆玲,巴英. 带群集耗散项的零压流方程的扰动黎曼问题[J]. 数学物理学报, 2020, 40(1): 49-62. |
[8] | 潘丽君,韩欣利,李彤. 色谱方程的广义黎曼问题:含有Delta激波[J]. 数学物理学报, 2019, 39(6): 1300-1313. |
[9] | 李继猛. 二阶广义Emden-Fowler型延迟微分方程的振荡性分析[J]. 数学物理学报, 2019, 39(5): 1041-1054. |
[10] | 童常青,郑静. 半线性Klein-Gordon方程的高频周期解[J]. 数学物理学报, 2019, 39(3): 484-500. |
[11] | 胡弟弟,汪璇. 记忆型无阻尼抽象发展方程的强时间依赖全局吸引子[J]. 数学物理学报, 2019, 39(1): 81-94. |
[12] | 王丽. 超音速流越过弯曲坡面的反问题[J]. 数学物理学报, 2018, 38(4): 679-686. |
[13] | 罗李平, 罗振国, 邓义华. 脉冲扰动对非线性时滞双曲型分布参数系统振动的影响[J]. 数学物理学报, 2018, 38(2): 313-321. |
[14] | 李文娟, 汤获, 俞元洪. 中立型Emden-Fowler微分方程的振动性[J]. 数学物理学报, 2017, 37(6): 1062-1069. |
[15] | 曾云辉, 罗李平, 俞元洪. 广义中立型Emden-Fowler方程的振动准则[J]. 数学物理学报, 2016, 36(6): 1067-1081. |
|