数学物理学报 ›› 2024, Vol. 44 ›› Issue (6): 1537-1549.

• • 上一篇    下一篇

具有弱耗散项的 Camassa-Holm 方程的解析性和整体 Gevrey 正则性

孟志英1,*(),殷朝阳1,2()   

  1. 1中山大学数学学院 广州 510275
    2中山大学理学院 广东深圳 518107
  • 收稿日期:2023-11-14 修回日期:2024-04-29 出版日期:2024-12-26 发布日期:2024-11-22
  • 通讯作者: *孟志英, Email: mengzhy3@mail2.sysu.edu.cn
  • 作者简介:殷朝阳, Email: mcsyzy@mail.sysu.edu.cn
  • 基金资助:
    国家自然科学基金(12171493)

Global Gevrey Regularity and Analyticity of a Weakly Dissipative Camassa-Holm Equation

Meng Zhiying1,*(),Yin Zhaoyang1,2()   

  1. 1Department of Mathematics, Sun Yat-sen University, Guangzhou 510275
    2School of Science, Shenzhen Campus of Sun Yat-sen University, Guangdong Shenzhen 518107
  • Received:2023-11-14 Revised:2024-04-29 Online:2024-12-26 Published:2024-11-22
  • Supported by:
    National Natural Science Foundation of China(12171493)

摘要:

该文主要研究了具有弱耗散项的 Camassa-Holm 的柯西问题在 Sobolev-Gevrey 空间的适定性. 首先, 证明了该方程的局部解析性和 Gevrey 正则性. 其次, 探究了解映射的连续性. 最后, 证明了解在 Gevrey 类 ($G_{\sigma}$) 中的整体 Gevrey 正则性, 其中 $\sigma \geq 1$.

关键词: 具有弱耗散项的 Camassa-Holm 方程, 解析性, Gevrey 类, 整体 Gevrey 正则性

Abstract:

This article mainly studies the well posedness of the Cauchy problem of a weakly dissipative Camassa-Holm equation in Sobolev-Gevrey spaces. Firstly, we demonstrate the local Gevrey regularity and analyticity of this equation. Then, we discuss the continuity of the data-to-solution map. Finally, we obtain the global Gevrey regularity of this system in Gevrey class $G_{\sigma}$ with $\sigma\geq 1$ in time.

Key words: A weakly dissipative Camassa-Holm equation, Analyticity, Gevrey class, Global Gevrey regularity

中图分类号: 

  • O175.27