[1] |
Bauschke H H, Combettes P. Convex Analysis and Monotone Operators Theory in Hilbert Spaces. New York: Springer-Verlag, 2020
|
[2] |
Chambolle A, Pock T. A first-order primal-dual algorithm for convex problems with applications to imaging. J Math Imaging Vis, 2011, 40: 120-145
|
[3] |
Combettes P, Pesquet J C. Proximal splitting methods in signal processing// Bauschke H, Burachik R, Combetles P, et al. Fixed-Point Algorithms for Inverse Problems in Science and Engineering. New York: Springer-Verlag, 2011: 185-212
|
[4] |
Uzawa H. Iterative methods for concave programming// Arrow K J, Hurwicz L, Uzawa H, eds. Studies in Linear and Nonlinear Programming. Stanford, CA: Stanford University Press, 1958, 6: 154-165
|
[5] |
Esser E, Zhang X, Chan T F. A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science. SIAM J Imaging Sci, 2010, 3: 1015-1046
|
[6] |
He B, You Y, Yuan X. On the convergence of primal-dual hybrid gradient algorithm. SIAM J Imaging Sci, 2014, 7(4): 2526-2537
|
[7] |
Chambolle A, Pock T. On the ergodic convergence rates of a first-order primal-dual algorithm. Math Program, 2016, 159(1): 253-287
|
[8] |
Condat L. A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms. J Optim Theory Appl, 2013, 158(2): 460-479
|
[9] |
Malitsky Y. Golden ratio algorithms for variational inequalities. Math Program, 2020, 184(1): 383-410
|
[10] |
Xu Y. Iteration complexity of inexact augmented Lagrangian methods for constrained convex programming. Math Program, 2021, 185: 89-117
|
[11] |
周丹青, 常小凯, 杨俊峰. 一类新的黄金比率原始对偶算法. 高等学校计算数学学报, 2022, 44: 97-106
|
|
Zhou D Q, Chang X K, Yang J F. A new Golden ratio primal-dual algorithm. Numerical Math A J Chinese Univ, 2022, 44: 97-106
|
[12] |
Zhu Y, Liu D, Tran-Ding Q. New primal-dual algorithms for a class of nonsmooth and nonlinear convex-concave minimax problems. SIAM J Optim, 2022, 32(4): 2580-2611
|
[13] |
Hamedani E Y, Aybat N S. A primal-dual algorithm with line search for general convex-concave saddle point problems. SIAM J Optim, 2021, 31: 1299-1329
|
[14] |
Rockafellar R, Wets R. Variational Analysis. Berlin: Springer, 2004
|