数学物理学报 ›› 2024, Vol. 44 ›› Issue (4): 1080-1091.

• • 上一篇    下一篇

求解非光滑鞍点问题的黄金比率原始对偶算法

聂佳琳(),龙宪军*()   

  1. 重庆工商大学数学与统计学院 重庆 400067
  • 收稿日期:2023-06-05 修回日期:2024-03-25 出版日期:2024-08-26 发布日期:2024-07-26
  • 通讯作者: *龙宪军, E-mail: xianjunlong@ctbu.edu.cn
  • 作者简介:聂佳琳, E-mail: niejialin00@163.com
  • 基金资助:
    国家自然科学基金(11471059);重庆市自然科学基金(cstc2021jcyj-msxmX0721);重庆市研究生导师团队建设项目(yds223010);重庆市研究生创新型科研项目(CYS240567);重庆工商大学团队项目(ZDPTTD201908)

A Golden Ratio Primal-Dual Algorithm for a Class of Nonsmooth Saddle Point Problems

Nie Jialin(),Long Xianjun*()   

  1. School of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067
  • Received:2023-06-05 Revised:2024-03-25 Online:2024-08-26 Published:2024-07-26
  • Supported by:
    NSFC(11471059);NSF of Chongqing(cstc2021jcyj-msxmX0721);Team Building Project for Graduate Tutors in Chongqing(yds223010);Innovation Project for Graduate Students of Chongqing(CYS240567);Project of Chongqing Technology and Business University(ZDPTTD201908)

摘要:

该文提出了一类新的黄金比率原始对偶算法求解非光滑鞍点问题, 该算法是完全可分裂的. 在一定的假设下, 证明了由算法迭代产生的序列收敛到问题的解, 同时证明了 $ O(\frac{1}{N}) $ 遍历收敛率. 数值实验表明该文提出的算法比 Zhu, Liu 和 Tran-Ding 文中的算法有更少的迭代步数和计算机耗时.

关键词: 鞍点问题, 黄金比率, 原始对偶算法, 收敛性, 遍历收敛率

Abstract:

In this paper, we present a new golden ratio primal-dual algorithm to solve the nonsmooth saddle point problems, which is full-splitting.Under some appropriate conditions, we prove the sequence generated by the algorithm iteration converges to the solution of the problem, as well as an $ O(1/N) $ ergodic convergence rate result. Finally, with comparisons to Zhu, Liu and Tran-Ding's algorithms, we give some numerical experiments to show the less iterate numbers and CPU time of the proposed method.

Key words: Saddle point problems, Golden ratio, Primal-dual algorithm, Iterate convergence, Ergodic convergence

中图分类号: 

  • O224