[1] |
Ambrosetti A, Ruiz D. Multiple bound states for the Schrödinger Poisson problem. Commun Contemp Math, 2008, 10(3): 391-404
|
[2] |
Azzollini A, Pomponio A. Ground state solutions for the nonlinear Schrödinger-Maxwell equations. J Math Anal Appl, 2008, 345: 90-108
|
[3] |
Bokanowski O, López J, Soler J. On an exchange interaction model for quantum transport: The Schrödinger- Poisson-Slater system. Math Models Methods Appl Sci, 2003, 13(10): 1397-1412
|
[4] |
Bokanowski O, Mauser N. Local approximation for the Hartree-Fock exchange potential: A deformation approach. Math Models Methods Appl Sci, 1999, 9(6): 941-961
|
[5] |
D’Aprile T, Mugnai D. Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations. Proc Roy Soc Edinburgh Sect A, 2004, 134(5): 893-906
|
[6] |
Jiang Y S, Wang Z P, Zhou H S. Positive solutions for Schrödinger-Poisson-Slater system with covercive potential. Topol Methods Nonlinear Anal, 2021, 57: 427-439
|
[7] |
Jiang Y S, Zhou H S. Multiple solutions for a Schrödinger-Poisson-Slater equation with external Coulomb potential. Science China Mathematics, 2014, 57: 1163-1174
|
[8] |
Jiang Y S, Zhou H S. Schrödinger-Poisson system with steep potential well. J Differential Equations, 2011, 251: 582-608
|
[9] |
Kikuchi H. On the existence of a solution for elliptic system related to the Maxwell-Schrödinger equations. Nonlinear Anal, 2007, 67(5): 1445-1456
|
[10] |
Lieb E, Simon B. The Hartree-Fock theory for Coulomb systems. Comm Math Phys, 1977, 53(3): 185-194
|
[11] |
Lions P. Some remarks on Hartree equation. Nonlinear Anal, 1981, 5(11): 1245-1256
|
[12] |
Lions P. Solutions of Hartree-Fock equations for Coulomb systems. Comm Math Phys, 1987, 109(1): 33-97
|
[13] |
Miao C X, Zhang J Y, Zheng J Q. A nonlinear Schrödinger equation with Coulomb potential. Acta Math Sci, 2022, 42B(6): 2230-2256
|
[14] |
Rabinowitz P H. Minimax Methods in Critical Point Theory with Applications to Differential Equations. Washington: AMS & CBMS, 1986
|
[15] |
Reed M, Simon B. Methods of Modern Mathematical Physics IV. New York: Academic Press, 1978
|
[16] |
Ruiz D. The Schrödinger-Poisson equation under the effect of a nonlinear local term. J Funct Anal, 2006, 237: 655-169
|
[17] |
Ruiz D. On the Schrödinger-Poisson-Slater system: Behavior of minimizers, radial and nonradial cases. Arch Rational Mech Anal, 2010, 198: 349-368
|
[18] |
Sánchez Ó, Soler J. Long-time dynamics of the Schrödinger-Poisson-Slater system. J Statist Phys, 2004, 114(1/2): 179-204
|
[19] |
Slater J. A simplification of the Hartree-Fock method. Phys Rev, 1951, 81(3): 385-390
|
[20] |
Stuart C. Existence theory for the Hartree equation. Arch Rational Mech Anal, 1973, 51: 60-69
|
[21] |
Wang Z P, Zhou H S. Positive solution for a nonlinear stationary Schrödinger-Poisson system in $R^3$. Discrete Contin Dyn Syst, 2007, 18(4): 809-816
|
[22] |
Willem M. Minimax Theorems (Progress in Nonlinear Differential Equations and Their Applications, 24). Boston: Birkhäuser, 1996
|
[23] |
Zhao L G, Zhao F K. On the existence of solutions for the Schrödinger-Poisson equations. J Math Anal Appl, 2008, 346: 155-169
|