数学物理学报 ›› 2024, Vol. 44 ›› Issue (3): 637-649.
收稿日期:
2023-04-24
修回日期:
2023-09-27
出版日期:
2024-06-26
发布日期:
2024-05-17
作者简介:
陈尚杰, Email:基金资助:
Received:
2023-04-24
Revised:
2023-09-27
Online:
2024-06-26
Published:
2024-05-17
Supported by:
摘要:
该文运用临界点理论中的
中图分类号:
陈尚杰.
Chen Shangjie. Infinitely Many Large Energy Solutions for the Klein-Gordon-Born-Infeld Equation on
[1] |
Albuquerque F, Chen S J, Li L. Solitary wave of ground state type for a nonlinear Klein-Gordon equation coupled with Born-Infeld theory in ![]() ![]() |
[2] |
Bartsch T, Wang Z Q. Existence and multiplicity results for some superlinear elliptic problems on ![]() ![]() |
[3] | Benci Vieri, Fortunato Donato. Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations. Rev Math Phys, 2002, 14(4): 409-420 |
[4] | Born M, Infeld L. Foundations of the new field theory. Proc R Soc Lond, 1934: 425-451 |
[5] | Che G, Chen H. Existence and multiplicity of nontrivial solutions for Klein-Gordon-Maxwell system with a parameter. J Korean Math Soc, 2017, 54(3): 1015-1030 |
[6] | Che G, Chen H. Infinitely many solutions for the Klein-Gordon equation with sublinear nonlinearity coupled with Born-Infeld theory. Bull Iran Math Soc, 2020, 46(4): 1083-1100 |
[7] |
Chen S J, Li L. Multiple solutions for the nonhomogeneous Klein-Gordon equation coupled with Born-Infeld theory on ![]() ![]() |
[8] |
Chen S J, Song S Z. Multiple solutions for nonhomogeneous Klein-Gordon-Maxwell equations on ![]() ![]() |
[9] |
Chen S J, Song S Z. The existence of multiple solutions for the Klein-Gordon equation with concave and convex nonlinearities coupled with Born-Infeld theory on ![]() ![]() |
[10] | Chen S, Tang X. Infinitely many solutions and least energy solutions for Klein-Gordon-Maxwell systems with general superlinear nonlinearity. Comput Math Appl, 2018, 75(9): 3358-3366 |
[11] | d’Avenia P, Pisani L. Nonlinear Klein-Gordon equations coupled with Born-Infeld type equations. Electron J Differential Equations, 2002, NO. 26 |
[12] | Ding L, Li L. Infinitely many standing wave solutions for the nonlinear Klein-Gordon-Maxwell system with sign-changing potential. Comput Math Appl, 2014, 68(5): 589-595 |
[13] | Fortunato D, Orsina L, Pisani L. Born-Infeld type equations for electrostatic fields. J Math Phys, 2002, 43(11): 5698-5706 |
[14] | Guo Z, Zhang X. On the solitary solutions for the nonlinear Klein-Gordon equation coupled with Born-Infeld theory. J Contemp Math Anal, Armen Acad Sci, 2022, 57(3): 145-156 |
[15] | He C M, Li L, Chen S J, O’Regan D. Ground state solution for the nonlinear Klein-Gordon equation coupled with Born-Infeld theory with critical exponents. Anal Math Phys, 2022, 12(2): No. 48 |
[16] | He C M, Li L, Chen S J. Nontrivial solution for Klein-Gordon equation coupled with Born-Infeld theory with critical growth. Adv. Nonlinear Anal, 2023, 12: Article ID 20220282 |
[17] | He X. Multiplicity of solutions for a nonlinear Klein-Gordon-Maxwell system. Acta Appl Math, 2014, 130: 237-250 |
[18] | Li L, Boucherif Ar, Daoudi-Merzagui N. Multiple solutions for 4-superlinear Klein-Gordon-Maxwell system without odd nonlinearity. Taiwanese J Math, 2017, 21(1): 151-165 |
[19] | Li L, Tang C L. Infinitely many solutions for a nonlinear Klein-Gordon-Maxwell system. Nonlinear Anal, 2014, 110: 157-169 |
[20] | Mugnai D. Coupled Klein-Gordon and Born-Infeld-type equations: Looking for solitary waves. Proc R Soc Lond Ser A Math Phys Eng Sci, 2004, 460(2045): 1519-1527 |
[21] | Rabinowitz P H. Minimax Methods in Critical Point Theory with Applications to Differential Equations. Washington: American Mathematical Society, 1986 |
[22] | Strauss W A. Existence of solitary waves in higher dimensions. Comm Math Phys, 1977, 55(2): 149-162 |
[23] | Teng K. Existence and multiplicity of solutions for the nonlinear Klein-Gordon equation coupled with Born-Infeld theory on bounded domain. Differ Equ Appl, 2012, 4(3): 445-457 |
[24] | Teng K M. Erratum to “Existence and multiplicity of solutions for the nonlinear Klein-Gordon equation coupled with Born-Infeld theory on bounded domain”. Differ Equ Appl, 2013, 5(1): 153-153 |
[25] | Teng K, Zhang K. Existence of solitary wave solutions for the nonlinear Klein-Gordon equation coupled with Born-Infeld theory with critical Sobolev exponent. Nonlinear Anal, 2011, 74(12): 4241-4251 |
[26] | Wang F Z. Solitary waves for the coupled nonlinear Klein-Gordon and Born-Infeld type equations. Electron J Differential Equations, 2012, No. 82 |
[27] | Wang L. Two solutions for a nonhomogeneous Klein-Gordon-Maxwell system. Electron J Qual Theory Differ Equ, 2019, No. 40 |
[28] | Wang L, Xiong C, Zhao P. Two solutions for nonhomogeneous Klein-Gordon equations coupled with Born- Infeld type equations. Electron J Differ Equ, 2022, No. 74 |
[29] | Wen L, Tang X, Chen S. Infinitely many solutions and least energy solutions for Klein-Gordon equation coupled with Born-Infeld theory. Complex Var Elliptic Equ, 2019, 64(12): 2077-2090 |
[30] | Willem M. Minimax Theorems. Boston: Birkhäuser, 1996 |
[31] | Yu Y. Solitary waves for nonlinear Klein-Gordon equations coupled with Born-Infeld theory. Ann Inst H Poincaré Anal Non Lin´eaire, 2010, 27(1): 351-376 |
[32] | Zhang Z, Liu J. Existence and multiplicity of sign-changing solutions for Klein-Gordon equation coupled with Born-Infeld theory with subcritical exponent. Qual Theory Dyn Syst, 2023, 22(1): Paper No. 7 |
[1] | 常金华, 魏娜. 带有渐近线性项和库伦位势的薛定谔-泊松系统[J]. 数学物理学报, 2024, 44(3): 650-660. |
[2] | 李仁华, 王征平. 含强制位势的分数阶薛定谔泊松方程的正规化解[J]. 数学物理学报, 2023, 43(6): 1723-1730. |
[3] | 李易娴,张正杰. 一类与 Klein-Gordon-Maxwell 问题有关的方程组的基态解的存在性[J]. 数学物理学报, 2023, 43(3): 680-690. |
[4] | 葛斌, 袁文硕. 全空间![]() ![]() |
[5] | 廖丹, 张慧萍, 姚旺进. 基于变分方法的脉冲微分方程 Neumann 边值问题多重解的存在性[J]. 数学物理学报, 2023, 43(2): 447-457. |
[6] | 兰军. 一类二阶Duffing方程反周期解的存在性和多重性[J]. 数学物理学报, 2022, 42(2): 463-469. |
[7] | 储昌木,蒙璐. 一类带有变指数增长的半线性椭圆方程正解的存在性[J]. 数学物理学报, 2021, 41(6): 1779-1790. |
[8] | 张清业,徐斌. 一类带局部非线性项的静态狄拉克方程的多重周期解[J]. 数学物理学报, 2021, 41(4): 1013-1023. |
[9] | 邓义华. ![]() ![]() |
[10] | 冯晓晶. 带有双临界项的薛定谔-泊松系统非平凡解的存在性[J]. 数学物理学报, 2020, 40(6): 1590-1598. |
[11] | 魏娜. ![]() |
[12] | 张申贵. 带类p(x)-拉普拉斯算子的双非局部问题的无穷多解[J]. 数学物理学报, 2018, 38(3): 514-526. |
[13] | 廖家锋, 李红英. 带Sobolev临界指数的超线性Kirchhoff型方程正解的存在性与多解性[J]. 数学物理学报, 2017, 37(6): 1119-1124. |
[14] | 陈丽珍, 李安然, 李刚. 带有次线性项和超线性项的Klein-Gordon-Maxwell系统多重解的存在性[J]. 数学物理学报, 2017, 37(4): 663-670. |
[15] | 刘健, 赵增勤. 基于变分方法的奇异脉冲方程弱解的存在性[J]. 数学物理学报, 2016, 36(3): 521-530. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 95
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 62
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|