数学物理学报 ›› 2024, Vol. 44 ›› Issue (3): 637-649.

• • 上一篇    下一篇

$\mathbf{R}^3$上具有一般凹凸非线性项的Klein-Gordon-Born-Infeld方程无穷多解的存在性

陈尚杰1,2()   

  1. 1.重庆工商大学数学与统计学院 重庆 400067
    2.经济社会应用统计重庆市重点实验 重庆 400067
  • 收稿日期:2023-04-24 修回日期:2023-09-27 出版日期:2024-06-26 发布日期:2024-05-17
  • 作者简介:陈尚杰, Email:11183356@qq.com
  • 基金资助:
    重庆市研究生导师团队建设项目(yds223010);重庆工商大学统计测度和应用团队(ZDPTTD201909)

Infinitely Many Large Energy Solutions for the Klein-Gordon-Born-Infeld Equation on $\mathbf{R}^3$ with Concave and Convex Nonlinearities

Chen Shangjie1,2()   

  1. 1. School of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067
    2. Chongqing Key Laboratory of Social Economy and Applied Statistics, Chongqing 400067
  • Received:2023-04-24 Revised:2023-09-27 Online:2024-06-26 Published:2024-05-17
  • Supported by:
    Team Building Project for Graduate Tutors in Chongqing(yds223010);CTBU Statistics Measure and Applications Group(ZDPTTD201909)

摘要:

该文运用临界点理论中的 $\mathbf{Z}_2$-山路定理得到了 $\mathbf{R}^3$ 上具有凹凸非线性项的 Klein-Gordon 方程和 Born-Infeld 理论耦合系统无穷多解的存在性.

关键词: Klein-Gordon 方程, Born-Infeld 理论, 变分方法, $\mathbf{Z}_2$-山路定理

Abstract:

In this paper, we obtained the existence of infinitely many large energy solutions for the Klein-Gordon equation with concave and convex nonlinearities coupled with Born-Infeld theory on $\mathbb{R}^3$ by using $\mathbf{Z}_2$-Mountain Pass Theorem in critical point theory.

Key words: Klein-Gordon equation, Born-Infeld theory, Variational methods, $\mathbf{Z}_2$-Mountain Pass Theorem

中图分类号: 

  • O176.3