[1] |
Chen J. EC-($t_1$,$t_2$)-tractability of approximation in weighted Korobov spaces in the worst case setting. Journal of Complexity, 2022, 73: 101680
|
[2] |
Dick J, Kritzer P, Pillichshammer F, Woźniakowski H. Approximation of analytic functions in Korobovspaces. Journal of Complexity, 2014, 30: 2-28
|
[3] |
Dick J, Larcher G, Pillichshammer F, Woźniakowski H. Exponential convergence and tractability of multivariateintegration for Korobov spaces. Math Comp, 2011, 80: 905-930
|
[4] |
Gnewuch M, Woźniakowski H. Quasi-polynomial tractability. Journal of Complexity, 2011, 27: 312-330
|
[5] |
Irrgeher C, Kritzer P, Pillichshammer F, Woźniakowski H. Tractability of multivariate approximation definedover Hilbert spaces with exponential weights. J Approx Theory, 2016, 207: 301-338
|
[6] |
Kritzer P, Pillichshammer F, Woźniakowski H. Multivariate integration of infinitely many times differentiablefunctions in weighted Korobov spaces. Math Comp, 2014, 83: 1189-1206
|
[7] |
Kritzer P, Pillichshammer F, Woźniakowski H. $\mathbb{L}_\infty$-approximation in Korobov spaces with exponentialweights. Journal of Complexity, 2017, 41: 102-125
|
[8] |
Kritzer P, Pillichshammer F, Woźniakowski H. Exponential tractability of linear weighted tensor productproblems in the worst-case setting for arbitrary linear functionals. Journal of Complexity, 2020, 61: 101501
|
[9] |
Kuo F Y, Wasilkowski G W, Woźniakowski H. Multivariate $\mathbb{L}_\infty$-approximation in the worst case settingover reproducing kernel Hilbert spaces. J Approx Theory, 2008, 152: 135-160
|
[10] |
Liu Y P, Zhang J. EC-tractability of approximation problems in function spaces defined over products ofsimplices. Journal of Complexity, 2019, 55: 101411
|
[11] |
Novak E, Woźniakowski H. Tractability of Multivariate Problems: Volume I: Linear Information. Helsinki:European Mathematical Society, 2008
|
[12] |
Novak E, Woźniakowski H. Tractability of Multivariate Problems: Volume II: Standard Information forFunctionals. Helsinki: European Mathematical Society, 2010
|
[13] |
Novak E, Woźniakowski H. Tractability of Multivariate Problems: Volume III: Standard Information forOperators. Helsinki: European Mathematical Society, 2012
|
[14] |
Siedlecki P. Uniform weak tractability. Journal of Complexity, 2013, 29: 438-453
|
[15] |
Siedlecki P, Weimar M. Notes on $(s,t)$-weak tractability: A refined classification of problems with(sub)exponential information complexity. J Approx Theory, 2015, 200: 227-258
|
[16] |
Sloan I H, Woźniakowski H. When are Quasi-Monte Carlo algorithms efficient for high-dimensional integrals?. Journal of Complexity, 1998, 14: 1-33
|
[17] |
Sloan I H, Woźniakowski H. Multivariate approximation for analytic functions with Gaussian kernels. Journal of Complexity, 2018, 45: 1-21
|
[18] |
Traub J, Wasilkowski G, Woźniakowski H. Information-Based Complexity. New York: Academic Press,1988
|
[19] |
Wang H. A note about EC-$(s,t)$-weak tractability of multivariate approximation with analytic Korobovkernels. Journal of Complexity, 2019, 55: 101412
|
[20] |
Woźniakowski H. Tractability and strong tractability of linear multivariate problems. Journal of Complexity, 1994, 10: 96-128
|
[21] |
Woźniakowski H. Tractability and strong tractability of multivariate tensor product problems. J ComputInform, 1994, 4: 1-19
|
[22] |
Xu G. EC-tractability of $\mathbb{L}_p$-approximation in Korobov spaces with exponential weights. J Approx Theory, 2020, 249: 105309
|
[23] |
Zeng X, Kritzer P, Hickernell F J. Spline methods using integration lattice and digital nets. Constr Approx, 2009, 30: 529-555
|
[24] |
Zhang J. A note on EC-tractability of multivariate approximation in weighted Korobov spaces for thestandard information class. Journal of Complexity, 2021, 67: 101573
|
[25] |
Zhang J, Liu Y P. Quasi-Monte Carlo tractability of integration problem in function spaces defined overproducts of balls. Int J Wavelets Multiresolut Inf Process, 2019, 17(6): 1950043
|
[26] |
Zhang J, Liu Y P. EC-tractability of multivariate approximation in Hermite spaces for the standard informationclass. Int J Wavelets Multiresolut Inf Process, 2022, 20(6): 2250029
|