[1] |
Blokh A M, Lyubich M Y. Measurable dynamics ofS-unimodal maps of the interval. Annales Scientifiques de l'Ecole Normale Supérieure, 1991, 24(5): 545-573
|
[2] |
Bowen R. A. Horseshoe with Positive Measure. Inventiones Mathematicae, 1975, 29: 203-204
doi: 10.1007/BF01389849
|
[3] |
Bruin H. Topological conditions for the existence of absorbing Cantor sets. Transactions of the American Mathematical Society, 1998, 350(6): 2229-2263
doi: 10.1090/tran/1998-350-06
|
[4] |
Bruin H, Keller G, Nowicki T, Strien S V. Wild Cantor attractors exist. Annals of Mathematics, 1996: 97-130
|
[5] |
Bruin H, Keller G, Pierre M S. Adding machines and wild attractors. Ergodic Theory and Dynamical Systems, 1997, 17(6): 1267-1287
doi: 10.1017/S0143385797086392
|
[6] |
Bruin H, Todd M. Wild attractors and thermodynamic formalism. Monatshefte für Mathematik, 2015, 178(1): 39-83
doi: 10.1007/s00605-015-0747-2
|
[7] |
De Melo W, Van Strien S. One-Dimensional Dynamics. Berlin: Springer, 2012
|
[8] |
Devaney R L. An Introduction to Chaotic Dynamical Systems. Boca Raton: CRC Press, 2018
|
[9] |
Ding Y, Sun Y. α-limit sets and Lyapunov function for maps with one topological attractor. Acta Mathematica Scientia, 2022, 42B(2): 813-824
|
[10] |
Ding Y, Xiao J. Thick hyperbolic repelling invariant Cantor sets and wild attractors. Nonlinearity, 2023, 36(2): 1378-1397
doi: 10.1088/1361-6544/acb18f
|
[11] |
Glendinning P. Milnor attractors and topological attractors of a piecewise linear map. Nonlinearity, 2001, 14(2): 239-257
doi: 10.1088/0951-7715/14/2/304
|
[12] |
Graczyk J, Kozlovski O S. On Hausdorff dimension of unimodal attractors. Communications in Mathematical Physics, 2006, 264(3): 565-581
doi: 10.1007/s00220-006-1540-9
|
[13] |
Kozlovski O S. Getting rid of the negative Schwarzian derivative condition. Annals of Mathematics, 2000: 743-762
|
[14] |
Li S, Shen W. Hausdorff dimension of Cantor attractors in one-dimensional dynamics. Inventiones Mathematicae, 2008, 171(2): 345-387
doi: 10.1007/s00222-007-0083-9
|
[15] |
Li S, Shen W. The topological complexity of Cantor attractors for unimodal interval maps. Transactions of the American Mathematical Society, 2016, 368(1): 659-688
doi: 10.1090/tran/2016-368-01
|
[16] |
Li S, Wang Q. A new class of generalized Fibonacci unimodal maps. Nonlinearity, 2014, 27(7): 1633-1643
doi: 10.1088/0951-7715/27/7/1633
|
[17] |
Liu J, Shi Y G. Conjugacy problem of strictly monotone maps with only one jump discontinuity. Results in Mathematics, 2020, 75(3): 1-15
doi: 10.1007/s00025-019-1126-4
|
[18] |
Lyubich M. Combinatorics, geometry and attractors of quasi-quadratic maps. Annals of Mathematics, 1994, 140(2): 347-404
doi: 10.2307/2118604
|
[19] |
Lyubich M, Milnor J. The Fibonacci unimodal map. Journal of the American Mathematical Society, 1993, 6(2): 425-457
doi: 10.1090/jams/1993-06-02
|
[20] |
Milnor J. On the concept of attractor. Communications in Mathematical Physics, 1985, 99(2): 177-195
doi: 10.1007/BF01212280
|
[21] |
Murdock J, Botelho F. A map with invariant Cantor set of positive measure. Nonlinear Analysis: Theory, Methods & Applications, 2005, 63(5-7): e659-e668
|