[1] |
丁义明, 范文涛, 谭秋衡, 等. 数据流的非平稳性度量. 数学物理学报, 2010, 30A(5): 1364-1376
|
|
Ding Y M, Fan W T, Tan Q H, et al. Nonstationarity measure of data stream. Acta Math Sci, 2010, 30A(5): 1364-1376
|
[2] |
王晶. 非平稳时间序列的多尺度分析. 北京: 北京交通大学, 2015
|
|
Wang J. Multiscale Analysis of Nonstationary Time Series. Beijing: Beijing Jiaotong University, 2015
|
[3] |
刘罗曼. 时间序列平稳性检验. 沈阳师范大学学报(自然科学版), 2010, 28(3): 357-359
|
|
Liu L M. Time series smoothness test. Journal of Shenyang Normal University (Natural Science Edition), 2010, 28(3): 357-359
|
[4] |
谭秋衡. 时间序列的非平稳性度量及其应用. 武汉: 中国科学院研究生院(武汉物理与数学研究所), 2013
|
|
Tan Q H. Non-stationary Measurement of Time Series and Its Application. Wuhan: Graduate School of Chinese Academy of Sciences (Wuhan Institute of Physics and Mathematics), 2013
|
[5] |
吴量. 基于非平稳性度量的EMD趋势噪声分解. 武汉: 华中师范大学, 2013
|
|
Wu L. EMD Trend Noise Decomposition Based on Non-smoothness Measure. Wuhan: Central China Normal University, 2013
|
[6] |
兰军, 谭秋衡, 董前进. 基于非平稳度量的灌溉用水量预测模型选择. 武汉大学学报(工学版), 2014, 47(6): 721-725
|
|
Lan J, Tan Q H, Dong Q J. Selection of forecasting models for irrigation water consumption based on nonstationarity measure. Engineering Journal of Wuhan University, 2014, 47(6): 721-725
|
[7] |
吕洋. 基于非平稳性度量的数字印章信息匹配. 武汉: 武汉理工大学, 2020
|
|
Lv Y. Information Matching of Digital Stamps Based on Non-smoothness Metric. Wuhan: Wuhan University of Technology, 2020
|
[8] |
Tan Q H, Jiang H J, Ding Y M. Model selection method based on maximal information coefficient of residuals. Acta Mathematica Scientia, 2014, 34B(2): 579-592
|
[9] |
Cover T M, Thomas J A. Elements of Information Theory. New York: Wiley-Interscience, 2006
|
[10] |
谭秋衡, 丁义明. 基于非平稳性度量的彩票数据实证分析. 数学物理学报, 2014, 34A(1): 207-216
|
|
Tan Q H, Ding Y M. Empirical analysis of lottery data based on non-stationarity measurement. Acta Math Sci, 2014, 34A(1): 207-216
|
[11] |
谭秋衡, 吴量, 李波. 基于EMD及非平稳性度量的趋势噪声分解方法. 数学物理学报, 2016, 36A(4): 783-794
|
|
Tan Q H, Wu L, Li B. Trend noise decomposition method based on EMD and non-stationarity measure. Acta Math Sci, 2016, 36A(4): 783-794
|
[12] |
邹永杰. 用非平稳度量区分白噪声过程与鞅差分序列. 武汉: 武汉理工大学, 2011
|
|
Zou Y J. Distinguishing White Noise Processes from Harnessed Difference Series Using a Non-smooth Metric. Wuhan: Wuhan University of Technology, 2011
|
[13] |
张小彩. 概率中的一些不等式. 郑州: 郑州大学, 2010
|
|
Zhang X C. Some Inequalities in Probability. Zhengzhou: Zhengzhou University, 2010
|
[14] |
Yang X W, Song S, Zhang H M. Law of iterated logarithm and model selection consistency for generalized linear models with independent and dependent responses. Frontiers of Mathematics in China, 2021, 16: 825-856
doi: 10.1007/s11464-021-0900-2
|
[15] |
Lorek P, Łoś G, Gotfryd K, Zagórski F. On testing pseudorandom generators via statistical tests based on the arcsine law. 2020, 380: 112968
|
[16] |
Deo C M. A note on stationary Gaussian sequences. The Annals of Probability, 1974, 2(5): 954-957
|
[17] |
Dzindzalieta D, Ileikis M, Jukeviius T. Optimal probability inequalities for random walks related to problems in extremal combinatorics. Siam Journal on Discrete Mathematics, 2011, 26(2): 828-837
doi: 10.1137/110834913
|
[18] |
Teicher H. On the law of the iterated logarithm. The Annals of Probability, 1974, 2(4): 714-728
|
[19] |
Zhou Z, Zhou Z, Wu L. Calibration for parameter estimation of signals with complex noise via nonstationarity measure. Complexity, 2021, 2021: Article ID 8840757
|
[20] |
王志刚. 自回归模型的定阶方法选择及弱信号探测. 武汉: 武汉理工大学, 2020
|
|
Wang Z G. Selection of Fixed-Order Methods for Autoregressive Models and Weak Signal Detection. Wuhan: Wuhan University of Technology, 2020
|
[21] |
Alsmeyer G, Buckmann F. An arcsine law for Markov random walks. Stochastic Processes and Their Applications, 2019, 129(1): 223-239
doi: 10.1016/j.spa.2018.02.014
|