数学物理学报 ›› 2023, Vol. 43 ›› Issue (6): 1759-1773.
收稿日期:
2023-01-05
修回日期:
2023-04-12
出版日期:
2023-12-26
发布日期:
2023-11-16
通讯作者:
*李周欣,E-mail: 作者简介:
周英告,E-mail: 基金资助:
Received:
2023-01-05
Revised:
2023-04-12
Online:
2023-12-26
Published:
2023-11-16
Supported by:
摘要:
该文考虑一类带临界增长项的退化的椭圆型偏微分方程解的存在性, 利用变量代换的方法, 把方程转化为半线性方程, 再利用集中紧引理以及基于锥分解的环绕定理, 证明了方程解的存在性.
中图分类号:
周英告, 李周欣. 环绕定理在退化的椭圆型方程上的应用[J]. 数学物理学报, 2023, 43(6): 1759-1773.
Zhou Yinggao, Li Zhouxin. An Application of Linking Theorem to Degenerative Elliptic Equations[J]. Acta mathematica scientia,Series A, 2023, 43(6): 1759-1773.
[1] | Adachia S, Watanable T. G-invariant positive solutions for a quasilinear Schrödinger equation. Adv Differential Equations, 2011, 16: 289-324 |
[2] |
Adachia S, Watanable T. Uniqueness of the ground state solutions of quasilinear Schrödinger equations. Nonlinear Anal, 2012, 75: 819-833
doi: 10.1016/j.na.2011.09.015 |
[3] |
Arcoya D, Boccardo L, Orsina L. Existence of critical points for some noncoercive functionals. Ann Inst H Poincaré Anal Non Linéaire, 2001, 18(4): 437-457
doi: 10.4171/aihpc |
[4] | Brezis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent. Commum Pure Appl Math, 1983, 36: 437-478 |
[5] |
Brizhik L, Eremko A, Piette B, Zakrzewski W J. Static solutions of a D-dimensional modified nonlinear Schrödinger equation. Nonlinearity, 2003, 16: 1481-1497
doi: 10.1088/0951-7715/16/4/317 |
[6] |
Colin M, Jeanjean L. Solutions for a quasilinear Schrödinger equation: A dual approch. Nonlinear Anal, 2004, 56: 213-226
doi: 10.1016/j.na.2003.09.008 |
[7] |
Degiovanni M, Lancelotti S. Linking solutions for p-Laplace equations with nonlinearity at critical growth. Journal of Functional Analysis, 2009, 256: 3643-3659
doi: 10.1016/j.jfa.2009.01.016 |
[8] |
Degiovanni M, Magrone P. Linking solutions for quasilinear equations at critical growth involving the "1-Laplace" operator. Calc Var Partial Differential Equations, 2009, 36: 591-609
doi: 10.1007/s00526-009-0246-1 |
[9] |
Deng Y, Peng S, Yan S. Positive soliton solutions for generalized quasilinear Schrödinger equations with critical growth. J Differential Equations, 2015, 258: 115-147
doi: 10.1016/j.jde.2014.09.006 |
[10] |
Deng Y, Peng S, Yan S. Critical exponents and solitary wave solutions for generalized quasilinear Schrödinger equations. J Differential Equations, 2016, 260: 1228-1262
doi: 10.1016/j.jde.2015.09.021 |
[11] |
Ghoussoub N, Yuan C. Multiple solutions for quasi-linear PDES involving the critical Sobolev and Hardy exponents. Trans Amer Math Soc, 2000, 352(12): 5703-5743
doi: 10.1090/tran/2000-352-12 |
[12] |
Hartmann B, Zakzeweski W. Electrons on hexagonal lattices and applications to nanotubes. Phys Rev B, 2003, 68: 184302
doi: 10.1103/PhysRevB.68.184302 |
[13] | Kurihura S. Large-Amplitude qusi-solitons in superfuid filme. J Math Soc Japan, 1981, 50: 3262-3267 |
[14] |
Laedke E W, Spatschek K H, Stenflo L. Evolution theorem for a class of perturbed envelope soliton solutions. J Math Phys, 1983, 24: 2764-2769
doi: 10.1063/1.525675 |
[15] |
Li Z. Positive solutions for a class of singular quasilinear Schrödinger equations with critical Sobolev exponent. J Differential Equations, 2019, 266: 7264-7290
doi: 10.1016/j.jde.2018.11.030 |
[16] |
Li Z, Yuan X, Zhang Q. Existence of critical points for noncoercive functionals with critical Sobolev exponent. Appl Anal, 2022, 101: 5358-5375
doi: 10.1080/00036811.2021.1892078 |
[17] |
Li Z, Zhang Y. Solutions for a class of quasilinear Schrödinger equations with critical Sobolev exponents. J Math Phys, 2017, 58: 021501
doi: 10.1063/1.4975009 |
[18] |
Liu J Q, Wang Z Q. Soliton solutions for quasilinear Schrödinger equations I. Proc Amer Math Soc, 2002, 131: 441-448
doi: 10.1090/proc/2003-131-02 |
[19] |
Liu J Q, Wang Y Q, Wang Z Q. Soliton solutions for quasilinear Schrödinger equations II. J Differential Equations, 2003, 187: 473-493
doi: 10.1016/S0022-0396(02)00064-5 |
[20] | Lions P L. The concentration-compactness principle in the calculus of variations. The limit case, Part 2. Rev Mat Iberoam, 1985, 1(2): 45-121 |
[21] |
Liu J Q, Wang Y Q, Wang Z Q. Solutions for the quasilinear Schrödinger equations via the Nehari Method. Comm Partial Differential Equations, 2004, 29: 879-901
doi: 10.1081/PDE-120037335 |
[22] | Shen Y, Li Z, Wang Y. Sign-Changing critical points for noncoercive functionals. Topol Methods Nonlinear Anal, 2014, 43(2): 373-384 |
[23] |
Shen Y, Wang Y. Soliton solutions for generalized quasilinear Schrödiger equations. Nonlinear Anal, 2013, 80: 194-201
doi: 10.1016/j.na.2012.10.005 |
[24] |
Silva E A B, Vieira G F. Quasilinear asymptotically periodic Schödinger equations with critical growth. Calc Var Partial Differential Equations, 2010, 39: 1-33
doi: 10.1007/s00526-009-0299-1 |
[25] | Wang Y, Zhang Y, Shen Y. Multiple solutions for quasilinear Schrödinger equations involving critical exponent. Appl Math Comput, 2010, 216: 849-856 |
[26] | Wang Y, Zou W. Bound states to critical quasilinear Schrödinger equations. NoDEA Nonlinear Differential Equations Appl, 2012, 19: 194-201 |
[27] |
Yang J, Wang Y, Abdelgadir A A. Soliton solutions for quasilinear Schrödinger equations. J Math Phys, 2013, 54: 071502
doi: 10.1063/1.4811394 |
[1] | 陈清方,廖家锋,元艳香. 一类带临界指数的 Schrödinger-Newton 系统正解的存在性[J]. 数学物理学报, 2023, 43(5): 1373-1381. |
[2] | 陈琳,刘范琴. 分数阶临界Choquard方程的多解[J]. 数学物理学报, 2022, 42(6): 1682-1704. |
[3] | 吉蕾,廖家锋. 一类带临界指数的Kirchhoff型问题正基态解的存在性[J]. 数学物理学报, 2022, 42(2): 418-426. |
[4] | 杨慧,韩玉柱. 一类抛物型Kirchhoff方程解的爆破性质[J]. 数学物理学报, 2021, 41(5): 1333-1346. |
[5] | 邹维林,任远春,肖美萍. 系数的L1相互关系对非线性退化椭圆方程解的正则性的影响[J]. 数学物理学报, 2021, 41(5): 1405-1414. |
[6] | 张金国,杨登允. 含Hardy型势的临界Grushin算子方程解的存在性和渐近估计[J]. 数学物理学报, 2021, 41(4): 997-1012. |
[7] | 冯晓晶. 带有双临界项的薛定谔-泊松系统非平凡解的存在性[J]. 数学物理学报, 2020, 40(6): 1590-1598. |
[8] | 李琴,杨作东. 含Caffarelli-Kohn-Nirenberg不等式和非线性边界条件的拟线性椭圆型方程组的多解性[J]. 数学物理学报, 2020, 40(6): 1634-1645. |
[9] | 王明旻,贾高. 含Φ-Laplace算子和凹凸非线性项的拟线性椭圆型方程正解的分歧性[J]. 数学物理学报, 2020, 40(5): 1235-1247. |
[10] | 吉蕾,廖家锋. 一类带临界指数的非齐次Kirchhoff型问题第二个正解的存在性[J]. 数学物理学报, 2019, 39(5): 1094-1101. |
[11] | 张晶. 一类次临界Bose-Einstein凝聚型方程组的渐近收敛行为和相位分离[J]. 数学物理学报, 2019, 39(3): 441-450. |
[12] | 宋洪雪,魏云峰. 含参数拟线性非齐次椭圆型方程的多重解[J]. 数学物理学报, 2019, 39(2): 286-296. |
[13] | 彭小明,郑筱筱,尚亚东. 具衰退记忆的四阶拟抛物方程的长时间行为[J]. 数学物理学报, 2019, 39(1): 114-124. |
[14] | 廖家锋, 李红英. 带Sobolev临界指数的超线性Kirchhoff型方程正解的存在性与多解性[J]. 数学物理学报, 2017, 37(6): 1119-1124. |
[15] | 裴瑞昌, 张吉慧, 马草川. 一类超线性(p,2)-拉普拉斯Dirichlet问题的非平凡解[J]. 数学物理学报, 2017, 37(1): 92-101. |
|