数学物理学报 ›› 2023, Vol. 43 ›› Issue (5): 1483-1518.

• • 上一篇    下一篇

一类分数高斯噪声驱动的 Ornstein-Uhlenbeck 过程的参数估计: Hurst 参数 $H\in (0,\frac12)$

陈勇1,李英2,*(),盛英1,古象盟1   

  1. 1江西师范大学数学与统计学院 南昌 330022
    2湘潭大学数学与计算科学学院 湖南湘潭 411105
  • 收稿日期:2022-01-06 修回日期:2023-04-10 出版日期:2023-10-26 发布日期:2023-08-09
  • 通讯作者: 李英 E-mail:liying@xtu.edu.cn
  • 基金资助:
    国家自然科学基金(11961033);国家自然科学基金(12171410);湖南省教育厅一般项目(22C0072)

Parameter Estimation for an Ornstein-Uhlenbeck Process Driven by a Type of Gaussian Noise with Hurst Parameter $H\in (0,\frac{1}{2})$

Chen Yong1,Li Ying2,*(),Sheng Ying1,Gu Xiangmeng1   

  1. 1School of Mathematics and Statistics, Jiangxi Normal University, Nanchang 330022
    2School of Mathematics and Computional Science, Xiangtan University, Xiangtan 411105
  • Received:2022-01-06 Revised:2023-04-10 Online:2023-10-26 Published:2023-08-09
  • Contact: Ying Li E-mail:liying@xtu.edu.cn
  • Supported by:
    NSFC(11961033);NSFC(12171410);General Project of Hunan Provincial Education Department of China(22C0072)

摘要:

Chen 和 Zhou (2021) 研究了一类分数高斯过程 $(G_t)_{t\ge 0}$ 驱动的 Ornstein-Uhlenbeck 过程的参数估计问题, 其中协方差函数 $ R(t,\, s)=\mathbb{E}[G_t G_s]$ 的二阶混合偏导分解成两个部分: 一个与分数布朗运动相同, 另一个以 $(ts)^{H-1}$ 为界, 其中 $H\in (\frac12,\,1)$. 该文研究同一问题, 但假设 $H\in (0,\,\frac12)$. 分数高斯过程联系的希尔伯特空间 $\mathfrak{H}$$H\in (\frac12, 1)$$H\in (0, \frac12)$ 时差异显著. 该文的起点是这类高斯过程 $(G_t)_{t\ge 0}$ 和分数布朗运动 $(B^{H}_t)_{t\ge 0}$ 分别联系的希尔伯特空间 $\mathfrak{H}$$\mathfrak{H}_1$ 的内积之间的一种定量关系. 该文得到漂移参数基于连续时间观测的最小二乘估计和矩估计的强相合性, 其中 $H\in (0,\,\frac{1}{2})$, 及渐近正态性和 Berry-Esséen 类上界, 其中 $H\in (0,\,\frac{3}{8})$.

关键词: 分数布朗运动, 四阶矩定理, Ornstein-Uhlenbeck 过程, 分数高斯过程, Berry-Esséen 类上界

Abstract:

In 2021, Chen and Zhou consider an inference problem for an Ornstein-Uhlenbeck process driven by a type of centered fractional Gaussian process $(G_t)_{t\ge 0}$. The second order mixed partial derivative of the covariance function $ R(t,\, s)=\mathbb{E}[G_t G_s]$ can be decomposed into two parts, one of which coincides with that of fractional Brownian motion and the other is bounded by $(ts)^{H-1}$ with $H\in (\frac12,\,1)$, up to a constant factor. In this paper, we investigate the same problem but with the assumption of $H\in (0,\,\frac12)$. It is well known that there is a significant difference between the Hilbert space associated with the fractional Gaussian processes in the case of $H\in (\frac12, 1)$ and that of $H\in (0, \frac12)$. The starting point of this paper is a quantitative relation between the inner product of $\mathfrak{H}$ associated with the Gaussian process $(G_t)_{t\ge 0}$ and that of the Hilbert space $\mathfrak{H}_1$ associated with the fractional Brownian motion $(B^{H}_t)_{t\ge 0}$. We prove the strong consistency with $H\in (0, \frac12)$, and the asymptotic normality and the Berry-Esséen bounds with $H\in (0,\frac38)$ for both the least squares estimator and the moment estimator of the drift parameter based on the continuous observations.

Key words: Fractional Brownian motion, Fourth moment theorems, Ornstein-Uhlenbeck process, Fractional Gaussian process, Berry-Esséen type upper bounds

中图分类号: 

  • O211.64