数学物理学报 ›› 2023, Vol. 43 ›› Issue (5): 1471-1482.
收稿日期:
2022-03-18
修回日期:
2023-03-08
出版日期:
2023-10-26
发布日期:
2023-08-09
通讯作者:
赵东霞
E-mail:2116786325@qq.com;zhaodongxia6@sina.com;1808642517@qq.com;1519546532@qq.com
作者简介:
庞玉婷,Email: 基金资助:
Pang Yuting1(),Zhao Dongxia1,*(),Zhao Xin2(),Gao Caixia1()
Received:
2022-03-18
Revised:
2023-03-08
Online:
2023-10-26
Published:
2023-08-09
Contact:
Dongxia Zhao
E-mail:2116786325@qq.com;zhaodongxia6@sina.com;1808642517@qq.com;1519546532@qq.com
Supported by:
摘要:
该文研究了具有恒定坡度和底部摩擦的单段明渠系统的指数稳定性, 该系统由
中图分类号:
庞玉婷,赵东霞,赵鑫,高彩霞. 一类 2
Pang Yuting,Zhao Dongxia,Zhao Xin,Gao Caixia. The PDP Boundary Control for a Class of 2
[1] |
Litrico X, Fromion V, Baume J P, et al. Experimental validation of a methodology to control irrigation canals based on Saint-Venant equations. Control Engineering Practice, 2005, 13(11): 1425-1437
doi: 10.1016/j.conengprac.2004.12.010 |
[2] |
Santos V D, Prieur C. Boundary control of open channels with numerical and experimental validations. IEEE Transactions on Control Systems Technology, 2008, 16(6): 1252-1264
doi: 10.1109/TCST.2008.919418 |
[3] |
Bastin G, Coron J M, Tamasoiu S O. Stability of linear density-flow hyperbolic systems under PI boundary control. Automatica, 2015, 53: 37-42
doi: 10.1016/j.automatica.2014.12.025 |
[4] |
Zhang L G, Prieur C, Qiao J F. PI boundary control of linear hyperbolic balance laws with stabilization of ARZ traffic flow models. Systems & Control Letters, 2019, 123: 85-91
doi: 10.1016/j.sysconle.2018.11.005 |
[5] | Bastin G, Coron J M. Stability and Boundary Stabilization of 1-D Hyperbolic Systems. Switzerland: Birkhäuser, 2016 |
[6] | Vazquez R, Krstic M, Coron J M. Backstepping boundary stabilization and state estimation of a $2\times2$ linear hyperbolic system. Orlando: IEEE Conference on Decision and Control and European Control Conference, 2011 |
[7] |
Litrico X, Fromion V. Boundary control of hyperbolic conservation laws using a frequency domain approach. Automatica, 2009, 45(3): 647-656
doi: 10.1016/j.automatica.2008.09.022 |
[8] | Bastin G, Coron J M, D'Andrea-Novel B, et al. Boundary control for exact cancellation of boundary disturbances in hyperbolic systems of conservation laws. Seville: IEEE Conference on Decision and Control, and the European Control Conference, 2005 |
[9] |
Bastin G, Coron J M. Exponential stability of PI control for Saint-Venant equations with a friction term. Methods and Applications of Analysis, 2019, 26(2): 101-112
doi: 10.4310/MAA.2019.v26.n2.a1 |
[10] |
Coron J M, D'Andrea-Novel B, Bastin G. A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws. IEEE Transactions on Automatic Control, 2007, 52(1): 2-11
doi: 10.1109/TAC.2006.887903 |
[11] | Pazy A. Semigroup of Linear Operators and Applications to Partial Differential Equations. New York: Springer-Verlag, 1983 |
[12] |
Hayat A, Shang P P. A quadratic Lyapunov function for Saint-Venant equations with arbitrary friction and space-varying slope. Automatica, 2019, 100: 52-60
doi: 10.1016/j.automatica.2018.10.035 |
[13] | Coron J M, Tamasoiu S O. Feedback stabilization for a scalar conservation law with PID boundary control. Chinese Annals of Mathematics, 2015, 36B(5): 763-776 |
[14] |
Chentouf B, Wang J M. Boundary feedback stabilization and Riesz basis property of a 1-d first order hyperbolic linear system with $L^\infty$-coefficients. Journal of Differential Equations, 2009, 246(3): 1119-1138
doi: 10.1016/j.jde.2008.08.010 |
[15] | Trinh N T, Andrieu V, Xu C Z. Boundary PI controllers for a star-shaped network of $2\times2$ systems governed by hyperbolic partial differential equations. International Federation of Automatic Control, 2017, 50(1): 7070-7075 |
[16] |
Trinh N T, Andrieu V, Xu C Z. Output regulation for a cascaded network of $2\times2$ hyperbolic systems with PI controller. Automatica, 2018, 91: 270-278
doi: 10.1016/j.automatica.2018.01.010 |
[17] | Aström K J, Hägglund T. PID Controllers: Theory, Design, and Tunning. Research Triangle Park, NC: ISA-The Instrumentation, Systems and Automation Society, 1995 |
[18] |
Litrico X, Fromion V, Scorletti G. Robust feedforward boundary control of hyperbolic conservation laws. Networks and Heterogeneous Media, 2017, 2(4): 717-731
doi: 10.3934/nhm.2007.2.717 |
[19] |
Bastin G, Coron J M, Hayat A. Feedforward boundary control of $2\times2$ nonlinear hyperbolic systems with application to Saint-Venant equations. European Journal of Control, 2021, 57: 41-53
doi: 10.1016/j.ejcon.2020.11.002 |
[20] |
Tallman G, Smith O. Analog study of dead-beat posicast control. Ire Transactions on Automatic Control, 2003, 4(1): 14-21
doi: 10.1109/TAC.1958.1104844 |
[21] | Silva G J, Datta A, Bhattacharyya S P. PID Controllers for Time-Delay Systems. Boston: Birkhäuser, 2005 |
[22] | Cai G, Chen L. Some problems of delayed feedback control. Advances in Mechanics, 2013, 43(1): 21-28 |
[23] |
Suh I H, Bien Z. Proportional minus delay controller. IEEE Transactions on Automatic Control, 1979, 24(2): 370-372
doi: 10.1109/TAC.1979.1102024 |
[24] |
Suh I H, Bien Z. Use of time-delay actions in the controller design. IEEE Transactions on Automatic Control, 1980, 25: 600-603
doi: 10.1109/TAC.1980.1102347 |
[25] | Atay F M. Balancing the inverted pendulum using position feedback. Applied Mathematics Letters, 1999, 12(5): 51-56 |
[26] |
Hu H Y. Using delayed state feedback to stabilize periodic motions of an oscillator. Journal of Sound and Vibration, 2004, 275(3-5): 1009-1025
doi: 10.1016/j.jsv.2003.07.006 |
[27] |
Liu B, Hu H. Stabilization of linear undamped systems via position and delayed position feedbacks. Journal of Sound and Vibration, 2008, 312(3): 509-525
doi: 10.1016/j.jsv.2007.11.001 |
[28] |
Krstic M. Control of an unstable reaction-diffusion PDE with long input delay. Systems & Control Letters, 2009, 58(10/11): 773-782
doi: 10.1016/j.sysconle.2009.08.006 |
[29] | 范东霞, 赵东霞, 史娜, 等. 一类扩散波方程的PDP反馈控制和稳定性分析. 数学物理学报, 2021, 41A(4): 1088-1096 |
Fan D X, Zhao D X, Shi N, et al. The PDP feedback control and stability analysis of a diffusive wave equation. Acta Mathematica Scientia, 2021, 41A(4): 1088-1096 | |
[30] |
Bastin G, Coron J M, D'Andrea-Novel B. On Lyapunov stability of linearised Saint-Venant equations for a sloping channel. Networks and Heterogeneous Media, 2009, 4(2): 177-187
doi: 10.3934/nhm.2009.4.177 |
[31] |
Zhao D X, Fan D X, Guo Y P. The spectral analysis and exponential stability of a 1-d $2\times2$ hyperbolic system with proportional feedback control. International Journal of Control, Automation and Systems, 2022, 20(8): 2633-2640
doi: 10.1007/s12555-021-0507-0 |
[1] | 何旭阳,毛明志,张腾飞. 一类具有泊松跳的脉冲中立型随机泛函微分方程的存在性及稳定性研究[J]. 数学物理学报, 2023, 43(4): 1221-1243. |
[2] | 范东霞,赵东霞,史娜,王婷婷. 一类扩散波方程的PDP反馈控制和稳定性分析[J]. 数学物理学报, 2021, 41(4): 1088-1096. |
[3] | 黄星寿,罗日才,王五生. 基于Gronwall积分不等式的比例时滞神经网络稳定性分析[J]. 数学物理学报, 2020, 40(3): 824-832. |
[4] | 曹忠威,文香丹,冯微,祖力. 一类具有随机扰动的非自治SIRI流行病模型的动力学行为[J]. 数学物理学报, 2020, 40(1): 221-233. |
[5] | 靖晓洁, 赵爱民, 刘桂荣. 考虑部分免疫和环境传播的麻疹传染病模型的全局稳定性[J]. 数学物理学报, 2019, 39(4): 909-917. |
[6] | 孟笑莹. 具有非单调发生率的时滞随机传染病模型分析[J]. 数学物理学报, 2017, 37(6): 1162-1175. |
[7] | 熊君, 李俊民, 何超. 一阶双曲型偏微分方程的模糊边界控制[J]. 数学物理学报, 2017, 37(3): 469-477. |
[8] | 张丽萍, 刘东毅, 张国山. 带有内部扰动的Timoshenko梁系统的指数稳定性[J]. 数学物理学报, 2017, 37(1): 185-198. |
[9] | 张雨田, 罗琦. 具反应扩散项和Neumann边界条件的脉冲变时滞细胞神经网络的全局指数稳定性[J]. 数学物理学报, 2013, 33(4): 777-786. |
[10] | 章春国. 具有局部记忆阻尼的非均质Timoshenko梁的稳定性[J]. 数学物理学报, 2012, 32(1): 186-200. |
[11] | 张若军, 王林山. 具有分布时滞的细胞神经网络的概周期解[J]. 数学物理学报, 2011, 31(2): 422-429. |
[12] | 李安, 宋新宇, 王志祥. 用扰动Lyapunov函数研究非线性微分方程关于初始时刻偏差的稳定性[J]. 数学物理学报, 2011, 31(2): 351-359. |
[13] | 夏文华;邓飞其;罗毅平. 具周期输入的有限连续分布时滞神经网络周期解的全局指数稳定性[J]. 数学物理学报, 2009, 29(1): 170-178. |
[14] | 刘炳文;黄立宏. 时滞细胞神经网络概周期解的存在性与全局指数稳定性[J]. 数学物理学报, 2007, 27(6): 1082-1088. |
[15] | 陈武华; 卢小梅; 李群宏; 关治洪. 随机Hopfield时滞神经网络均方指数稳定性: LMI方法[J]. 数学物理学报, 2007, 27(1): 109-117. |
|