数学物理学报 ›› 2023, Vol. 43 ›› Issue (5): 1350-1372.
收稿日期:
2020-09-30
修回日期:
2023-03-24
出版日期:
2023-10-26
发布日期:
2023-08-09
通讯作者:
王莉
E-mail:jianhui0711141@163.com;gluminous@163.com;wangli.423@163.com
作者简介:
简慧,Email: 基金资助:
Jian Hui(),Gong Min(),Wang Li*()
Received:
2020-09-30
Revised:
2023-03-24
Online:
2023-10-26
Published:
2023-08-09
Contact:
Li Wang
E-mail:jianhui0711141@163.com;gluminous@163.com;wangli.423@163.com
Supported by:
摘要:
该文致力于研究带部分调和势的非齐次非线性 Schrödinger 方程的 Cauchy 问题. 该方程是玻色-爱因斯坦凝聚中的一个重要模型.结合非线性椭圆方程基态解的变分特征及质量和能量守恒, 首先得到了该问题整体解的存在性, 并利用尺度变换技巧证明了该方程在一些特殊初值情形下存在爆破解. 其次讨论了爆破解的
中图分类号:
简慧, 龚敏, 王莉. 带部分调和势的非齐次非线性 Schrödinger 方程的爆破解[J]. 数学物理学报, 2023, 43(5): 1350-1372.
Jian Hui, Gong Min, Wang Li. On the Blow-Up Solutions of Inhomogeneous Nonlinear Schrödinger Equation with a Partial Confinement[J]. Acta mathematica scientia,Series A, 2023, 43(5): 1350-1372.
[1] |
Antonelli P, Carles R, Silva J D. Scattering for nonlinear Schrödinger equation under partial harmonic confinement. Comm Math Phys, 2015, 334 (1): 367-396
doi: 10.1007/s00220-014-2166-y |
[2] |
Bao W Z, Cai Y Y. Mathematics theory and numerical methods for Bose-Einstein condensation. Kinet Relat Models, 2013, 6(1): 1-135
doi: 10.3934/krm.2013.6.1 |
[3] |
Bellazzini J, Boussaid N, Jeanjean L, Visciglia N. Existence and stability of standing waves for supercritical NLS with a partial confinement. Comm Math Phys, 2017, 353(1): 229-251
doi: 10.1007/s00220-017-2866-1 |
[4] |
Cao D M, Han P G. Inhomogeneous critical nonlinear Schrödinger equations with a harmonic potential. J Math Phys, 2010, 51(4): 043505
doi: 10.1063/1.3371246 |
[5] | Cazenave T. Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics vol. 10. Providence: American Mathematical Society, 2003 |
[6] |
Dalfovo F, Giorgini S, Pitaevskii L P, Stringari S. Theory of Bose-Einstein condensation in trapped gases. Rev Modern Phys, 1999, 71(3): 463-512
doi: 10.1103/RevModPhys.71.463 |
[7] |
Feng B H. On the blow-up solutions for the nonlinear Schrödinger equations with combined power-type nonlinearities. J Evol Equ, 2018, 18(1): 203-220
doi: 10.1007/s00028-017-0397-z |
[8] | Fukuizumi R, Ohta M. Stability of standing waves for nonlinear Schrödinger equations with potentials. Differential Integral Equations, 2003, 16(1): 111-128 |
[9] |
Glassey R T. On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations. J Math Phys, 1977, 18(9): 1794-1797
doi: 10.1063/1.523491 |
[10] |
Gou T X. Existence and orbital stability of standing waves to nonlinear Schrödinger system with partial confinement. J Math Phys, 2018, 59(7): 071508
doi: 10.1063/1.5028208 |
[11] | Hmidi T, Keraani S. Blowup theory for the critical nonlinear Schrödinger equations revisited. Int Math Res Notices, 2005, 46: 2815-2828 |
[12] |
Jia H F, Li G B, Luo X. Stable standing waves for cubic nonlinear Schrödinger systems with partial confinement. Discrete Contin Dyn Syst, 2020, 40(5): 2739-2766
doi: 10.3934/dcds.2020148 |
[13] |
Kwong M K. Uniqueness of positive solutions of $\Delta u-u+u^p = 0$ in $\mathbf{R}^N$. Arch Ration Mech Anal, 1989, 105: 243-266
doi: 10.1007/BF00251502 |
[14] | Li X G, Zhang J. Limit behavior of blow-up solutions for critical nonlinear Schrödinger equation with harmonic potential. Differential Integral Equations, 2006, 19(7): 761-771 |
[15] |
Liu Q, Zhou Y Q, Zhang J, Zhang W N. Sharp condition of global existence for nonlinear Schrödinger equation with a harmonic potential. Applied Mathematics and Computation, 2006, 177(2): 482-487
doi: 10.1016/j.amc.2005.11.024 |
[16] | Liu Z X. On a class of inhomogeneous, energy-critical, focusing, nonlinear Schrödinger equations. Acta Math Sci, 2013, 33B(6): 1522-1530 |
[17] | Merle F. Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power. Duke Math J, 1993, 69(2): 427-454 |
[18] | Merle F. Nonexistence of minimal blow-up solutions of equations i$u_t = -\Delta u-k(x)|u|^{\frac{4}{N}}u$ in $\mathbf{R}^N$. Ann Inst Henri Poincare, 1996, 64(1): 33-85 |
[19] |
Merle F, Raphaël P. The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation. Ann Math, 2005, 161(1): 157-222
doi: 10.4007/annals |
[20] |
Ogawa T, Tsutsumi Y. Blow-up of $H^1$ solution for the nonlinear Schrödinger equation. J Differential Equations, 1991, 92(2): 317-330
doi: 10.1016/0022-0396(91)90052-B |
[21] |
Oh Y G. Cauchy problem and Ehrenfest's law of nonlinear Schrödinger equations with potentials. J Differential Equations, 1989, 81(2): 255-274
doi: 10.1016/0022-0396(89)90123-X |
[22] | Ohta M. Strong instability of standing waves for nonlinear Schrödinger equations with a partial confinement. Commun Pure Appl Anal, 2018, 17(4): 1671-1680 |
[23] |
Ohta M. Strong instability of standing waves for nonlinear Schrödinger equations with harmonic potential. Funkcial Ekvac, 2018, 61(1): 135-143
doi: 10.1619/fesi.61.135 |
[24] |
Pan J J, Zhang J. Mass concentration for nonlinear Schrödinger equation with partial confinement. J Math Anal Appl, 2020, 481(2): 123484
doi: 10.1016/j.jmaa.2019.123484 |
[25] |
Pang P Y H, Tang H Y, Wang Y D. Blow-up solutions of inhomogeneous nonlinear Schrödinger equations. Calculus Var Partial Differ Equ, 2006, 26(2): 137-169
doi: 10.1007/s00526-005-0362-5 |
[26] | Pitaevskii L, Stringari S. Bose-Einstein Condensation. International Series of Monographs on Physics, 116. Oxford: Oxford University Press, 2003 |
[27] |
Shu J, Zhang J. Sharp criterion of global existence for a class of nonlinear Schrödinger equation with critical exponent. Applied Mathematics and Computation, 2006, 182(2) : 1482-1487
doi: 10.1016/j.amc.2006.05.036 |
[28] |
Shu J, Zhang J. Sharp criterion of global existence for nonlinear Schrödinger equation with a harmonic potential. Acta Mathematica Sinica, English Series, 2009, 25(4): 537-544
doi: 10.1007/s10114-009-7473-4 |
[29] |
Strauss W A. Existence of solitary waves in higher dimensions. Comm Math Phys, 1977, 55: 149-162
doi: 10.1007/BF01626517 |
[30] | Sulem C, Sulem P. The Nonlinear Schrödinger Equation:Self-Focusing and Wave Collapse. New York: Springer-Verlag, 1999 |
[31] |
Weinstein M I. Nonlinear Schrödinger equations and sharp interpolation estimates. Comm Math Phys, 1983, 87: 567-576
doi: 10.1007/BF01208265 |
[32] |
Weinstein M I. On the structure and formation of singularities in solutions to nonlinear dispersive evolution equations. Comm Partial Differential Equations, 1986, 11: 545-565
doi: 10.1080/03605308608820435 |
[33] |
Zhang J. Stability of attractive Bose-Einstein condensates. J Stat Phys, 2000, 101: 731-746
doi: 10.1023/A:1026437923987 |
[34] |
Zhang J. Sharp threshold for blow-up and global existence in nonlinear Schrödinger equations under a harmonic potential. Comm Partial Differential Equations, 2005, 30(10): 1429-1443
doi: 10.1080/03605300500299539 |
[35] |
Zhang J. Sharp threshold of global existence for nonlinear Schrödinger equation with partial confinement. Nonlinear Anal, 2020, 196: 111832
doi: 10.1016/j.na.2020.111832 |
[36] | Zhang M Y, Ahmed M S. Sharp conditions of global existence for nonlinear Schrödinger equation with a harmonic potential. Adv Nonlinear Anal, 2019, 9(1): 882-894 |
[37] |
Zhu S H, Zhang J, Li X G. Limiting profile of blow-up solutions for the Gross-Pitaevskii equation. Science China Mathematics, 2009, 52(5): 1017-1030
doi: 10.1007/s11425-008-0140-x |
[1] | 沈旭辉,丁俊堂. 具有梯度源项和非线性边界条件的多孔介质方程组解的爆破[J]. 数学物理学报, 2023, 43(5): 1417-1426. |
[2] | 蔡森林,周寿明,陈容. 大振幅浅水波模型的柯西问题研究[J]. 数学物理学报, 2023, 43(4): 1197-1120. |
[3] | 欧阳柏平. 非线性记忆项的Euler-Poisson-Darboux-Tricomi方程解的爆破[J]. 数学物理学报, 2023, 43(1): 169-180. |
[4] | 冯美强, 张学梅. Monge-Ampère方程边界爆破解的最优估计和不存在性[J]. 数学物理学报, 2023, 43(1): 181-202. |
[5] | 鲁呵倩,张正策. 带非线性梯度项的p-Laplacian抛物方程的临界指标[J]. 数学物理学报, 2022, 42(5): 1381-1397. |
[6] | 万雅琪,陈晓莉. 压力项属于Triebel-Lizorkin空间的三维不可压Navier-Stokes方程的正则性准则[J]. 数学物理学报, 2022, 42(5): 1473-1481. |
[7] | 邱臻,王光武. 量子Navier-Stokes-Landau-Lifshitz方程光滑解的爆破问题[J]. 数学物理学报, 2022, 42(4): 1074-1088. |
[8] | 何春蕾,刘子慧. 一类双曲平均曲率流的对称与整体解[J]. 数学物理学报, 2022, 42(4): 1089-1102. |
[9] | 杨连峰,曾小雨. 拟相对论薛定谔方程基态解的存在性与爆破行为[J]. 数学物理学报, 2022, 42(1): 165-175. |
[10] | 杜玉阁,田书英. 一类带对数非线性项的抛物方程解的存在性和爆破[J]. 数学物理学报, 2021, 41(6): 1816-1829. |
[11] | 合敬然,郭合林,王文清. 一类带强制位势的p-Laplace特征值问题[J]. 数学物理学报, 2021, 41(5): 1323-1332. |
[12] | 杨慧,韩玉柱. 一类抛物型Kirchhoff方程解的爆破性质[J]. 数学物理学报, 2021, 41(5): 1333-1346. |
[13] | 欧阳柏平,肖胜中. 具有非线性记忆项的半线性双波动方程解的全局非存在性[J]. 数学物理学报, 2021, 41(5): 1372-1381. |
[14] | 陈明涛,苏文火,臧爱彬. 带真空无磁扩散不可压磁流体方程柯西问题的局部适定性[J]. 数学物理学报, 2021, 41(1): 100-125. |
[15] | 陈翔英,陈国旺. 源于非线性层晶格模型的一耦合Boussinesq型广义方程组的Cauchy问题[J]. 数学物理学报, 2020, 40(6): 1552-1567. |
|