数学物理学报 ›› 2023, Vol. 43 ›› Issue (5): 1341-1349.

• • 上一篇    下一篇

带有凹非线性项的平均曲率半正问题正解的确切个数

李晓东*(),高红亮(),徐晶   

  1. 兰州交通大学数学系 兰州 730070
  • 收稿日期:2022-10-09 修回日期:2023-04-10 出版日期:2023-10-26 发布日期:2023-08-09
  • 通讯作者: 李晓东 E-mail:LXD5775@163.com;gaohongliang101@163.com
  • 作者简介:高红亮,Email: gaohongliang101@163.com
  • 基金资助:
    国家自然科学基金(11801243);国家自然科学基金(11961039);甘肃省高等学校青年博士基金项目(2022QB-056);兰州交通大学青年学者科学基金(2017012)

Exact Multiplicity of Positive Solutions for a Semipositone Mean Curvature Problem with Concave Nonlinearity

Li Xiaodong*(),Gao Hongliang(),Xu Jing   

  1. Department of Mathematics, Lanzhou Jiaotong University, Lanzhou 730070
  • Received:2022-10-09 Revised:2023-04-10 Online:2023-10-26 Published:2023-08-09
  • Contact: Xiaodong Li E-mail:LXD5775@163.com;gaohongliang101@163.com
  • Supported by:
    NSFC(11801243);NSFC(11961039);Gansu Province Colleges and Universities Young Doctor fund project(2022QB-056);Young Scholars Science Foundation of Lanzhou Jiaotong University(2017012)

摘要:

该文研究了一维 Minkowski 空间中给定平均曲率问题

$ \left\{\begin{array}{ll} -\left(\frac{u'}{\sqrt{1-u'^{2}}}\right)'=\lambda f(u), x\in(-L,L),\\ u(-L)=0=u(L) \end{array} \right. $

正解的确切个数及分歧图, 其中 $\lambda>0$ 为参数, $L>0$ 为常数, $f\in C^{2}([0,\infty), \mathbb{R})$ 满足 $f(0)<0$, 并且对于 $0, $f''(u)<0$. 基于时间映像原理, 讨论了两种情形, 得到了该问题根据 $\lambda$ 的取值范围不同, 分别有零解, 一个解和两个解.

关键词: Minkowski 空间, 半正, 正解, 时间映像, 确切个数

Abstract:

In this paper, we study the exact multiplicity and bifurcation diagrams of positive solutions for the prescribed mean curvature problem in one-dimensional Minkowski space in the form of

$ \left\{\begin{array}{ll} -\left(\frac{u'}{\sqrt{1-u'^{2}}}\right)'=\lambda f(u), x\in(-L,L),\\ u(-L)=0=u(L), \end{array} \right. $

where $\lambda>0$ is a bifurcation parameter and $L>0$ is an evolution parameters, $f\in C^{2}([0,\infty), \mathbb{R})$ satisfies $f(0)<0$ and $f$ is concave for $0. In two different cases, we obtain that the above problem has zero, exactly one, or exactly two positive solutions according to different ranges of $\lambda$. The arguments are based upon a detailed analysis of the time map.

Key words: Minkowski space, Semipositone, Positive solution, Time map, Exact multiplicity

中图分类号: 

  • O175.8