数学物理学报 ›› 2023, Vol. 43 ›› Issue (5): 1333-1340.

• • 上一篇    下一篇

Bergman 空间的再生核与 Toeplitz 算子的特征向量

丁宣浩1,2(),侯林1(),李永宁1,2,*()   

  1. 1重庆工商大学数学与统计学院 重庆 400067
    2经济社会应用统计重庆市重点实验室 重庆 400067
  • 收稿日期:2022-09-25 修回日期:2023-04-10 出版日期:2023-10-26 发布日期:2023-08-09
  • 通讯作者: 李永宁 E-mail:dingxuanhao@ctbu.edu.cn;houlin202108@163.com;yongningli@ctbu.edu.cn
  • 作者简介:丁宣浩, Email: dingxuanhao@ctbu.edu.cn;|侯林, houlin202108@163.com
  • 基金资助:
    国家自然科学基金(11871122);国家自然科学基金(12101092);重庆市自然科学基金(CSTB2022NSCQ-MSX1045);重庆市自然科学基金(cstc2020jcyj-msxmX0318);重庆市教委基金(KJQN202100822);重庆工商大学基金(2053010);重庆工商大学校级项目(yjscxx2022-112-186)

The Reproducing Kernel of Bergman Space and the Eigenvectors of Toeplitz Operator

Ding Xuanhao1,2(),Hou Lin1(),Li Yongning1,2,*()   

  1. 1School of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067
    2Chongqing Key Laboratory of Social Economy and Applied Statistics, Chongqing 400067
  • Received:2022-09-25 Revised:2023-04-10 Online:2023-10-26 Published:2023-08-09
  • Contact: Yongning Li E-mail:dingxuanhao@ctbu.edu.cn;houlin202108@163.com;yongningli@ctbu.edu.cn
  • Supported by:
    NSFC(11871122);NSFC(12101092);Natural Science Foundation of Chongqing(CSTB2022NSCQ-MSX1045);Natural Science Foundation of Chongqing(cstc2020jcyj-msxmX0318);Chongqing Municipal Funds(KJQN202100822);Chongqing Technology and Business University Fund(2053010);Chongqing Technology and Business University-Level Projects(yjscxx2022-112-186)

摘要:

在 Bergman 空间中, 对任意 φ¯H, 众所周知 TφKz=φ(z)Kz, 即KzTφ 的属于 φ(z) 的特征向量, 其中 Kz 是 Bergman 空间的再生核. 反过来, φ 是有界调和函数, 若存在 zD (或者对每一个 zD ) 使得 KzTφ 的特征向量, 是否必有 φ¯H? 针对这些问题, 该文给出了以再生核 Kz 为特征向量的具有有界调和符号Toeplitz 算子的完全刻画, 而且还给出了以所有的 φ(z)(zD) 为特征值的具有有界调和符号Toeplitz算子的部分刻画.

关键词: Bergman 空间, 再生核, Toeplitz 算子, 特征向量

Abstract:

In the Bergman space, it is well-known that TφKz=φ(z)Kz for φ¯H, that is, Kz is the eigenvector of Tφ corresponding the eigenvalue φ(z), where Kz is the reproducing kernel of Bergman space. Conversely, if φ is a bounded harmonic function and if there is zD (or for every zD), Kz is a eigenvector of Tφ, whether there must be φ¯H ? In view of the above questions, in this paper we give a complete characterization of the Toeplitz operator with the bounded harmonic symbol which have the reproducing kernels Kz as their eigenvectors. Moreover, we partially describe the Toeplitz operators with the bounded harmonic symbol whose eigenvalues are all φ(z)(zD).

Key words: Bergman space, Reproducing kernel, Toeplitz operator, Eigenvectors

中图分类号: 

  • O177.1