数学物理学报 ›› 2023, Vol. 43 ›› Issue (5): 1333-1340.

• • 上一篇    下一篇

Bergman 空间的再生核与 Toeplitz 算子的特征向量

丁宣浩1,2(),侯林1(),李永宁1,2,*()   

  1. 1重庆工商大学数学与统计学院 重庆 400067
    2经济社会应用统计重庆市重点实验室 重庆 400067
  • 收稿日期:2022-09-25 修回日期:2023-04-10 出版日期:2023-10-26 发布日期:2023-08-09
  • 通讯作者: 李永宁 E-mail:dingxuanhao@ctbu.edu.cn;houlin202108@163.com;yongningli@ctbu.edu.cn
  • 作者简介:丁宣浩, Email: dingxuanhao@ctbu.edu.cn;|侯林, houlin202108@163.com
  • 基金资助:
    国家自然科学基金(11871122);国家自然科学基金(12101092);重庆市自然科学基金(CSTB2022NSCQ-MSX1045);重庆市自然科学基金(cstc2020jcyj-msxmX0318);重庆市教委基金(KJQN202100822);重庆工商大学基金(2053010);重庆工商大学校级项目(yjscxx2022-112-186)

The Reproducing Kernel of Bergman Space and the Eigenvectors of Toeplitz Operator

Ding Xuanhao1,2(),Hou Lin1(),Li Yongning1,2,*()   

  1. 1School of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067
    2Chongqing Key Laboratory of Social Economy and Applied Statistics, Chongqing 400067
  • Received:2022-09-25 Revised:2023-04-10 Online:2023-10-26 Published:2023-08-09
  • Contact: Yongning Li E-mail:dingxuanhao@ctbu.edu.cn;houlin202108@163.com;yongningli@ctbu.edu.cn
  • Supported by:
    NSFC(11871122);NSFC(12101092);Natural Science Foundation of Chongqing(CSTB2022NSCQ-MSX1045);Natural Science Foundation of Chongqing(cstc2020jcyj-msxmX0318);Chongqing Municipal Funds(KJQN202100822);Chongqing Technology and Business University Fund(2053010);Chongqing Technology and Business University-Level Projects(yjscxx2022-112-186)

摘要:

在 Bergman 空间中, 对任意 $ \varphi\in \overline{H^{\infty}} $, 众所周知 $ T_{\varphi}K_{z}=\varphi(z)K_{z} $, 即$ K_{z} $$ T_{\varphi} $ 的属于 $ \varphi(z) $ 的特征向量, 其中 $ K_{z} $ 是 Bergman 空间的再生核. 反过来, $ \varphi $ 是有界调和函数, 若存在 $ z\in \mathbb{D} $ (或者对每一个 $ z\in\mathbb{D} $ ) 使得 $ K_{z} $$ T_{\varphi} $ 的特征向量, 是否必有 $ \varphi\in \overline{H^{\infty}} $? 针对这些问题, 该文给出了以再生核 $ K_{z} $ 为特征向量的具有有界调和符号Toeplitz 算子的完全刻画, 而且还给出了以所有的 $ \varphi(z) (z\in \mathbb{D}) $ 为特征值的具有有界调和符号Toeplitz算子的部分刻画.

关键词: Bergman 空间, 再生核, Toeplitz 算子, 特征向量

Abstract:

In the Bergman space, it is well-known that $ T_{\varphi}K_{z}=\varphi(z)K_{z} $ for $ \varphi\in \overline{H^{\infty}} $, that is, $ K_{z} $ is the eigenvector of $ T_{\varphi} $ corresponding the eigenvalue $ \varphi(z) $, where $ K_{z} $ is the reproducing kernel of Bergman space. Conversely, if $ \varphi $ is a bounded harmonic function and if there is $ z\in \mathbb{D} $ (or for every $ z\in\mathbb{D} $), $ K_{z} $ is a eigenvector of $ T_{\varphi} $, whether there must be $ \varphi\in \overline{H^{\infty}} $ ? In view of the above questions, in this paper we give a complete characterization of the Toeplitz operator with the bounded harmonic symbol which have the reproducing kernels $ K_{z} $ as their eigenvectors. Moreover, we partially describe the Toeplitz operators with the bounded harmonic symbol whose eigenvalues are all $ \varphi(z) (z\in \mathbb{D}) $.

Key words: Bergman space, Reproducing kernel, Toeplitz operator, Eigenvectors

中图分类号: 

  • O177.1