[1] |
Glassey R T. The Cauchy Problem in Kinetic Theory. Philadelphia: SIAM, 1996
|
[2] |
Rein G. Collisionless Kinetic Equation from Astrophysics the Vlasov-Poisson System//Dafermos C M, Feireisl E, eds. Handbook of Differential Equations: Evolutionary Equations Elsevier, 2007, 3: 383-476
|
[3] |
Andréasson H. The Einstein-Vlasov system/kinetic theory. Living Rev Relativ, 2011, 14: 1-55
doi: 10.12942/lrr-2011-1
|
[4] |
Calogero S. Spherically symmetric steady states of galactic dynamics in scalar gravity. Class Quantum Gravity, 2003, 20: 1729-1741
doi: 10.1088/0264-9381/20/9/310
|
[5] |
Nordstrom G. Zur Theorie der Gravitation vom Standpunkt des Relativitätsprinzips. Annalen der Physik, 1913, 347(13): 533-554
doi: 10.1002/(ISSN)1521-3889
|
[6] |
Calogero S, Rein G. On classical solution of the Nordström-Vlasov system. Comm Partial Differential Equations, 2003, 28: 1863-1885
doi: 10.1081/PDE-120025488
|
[7] |
Glassey R T, Strauss W A. Singularity formation in a collisionless plasma could occur only at high velocities. Arch Rational Mech Anal, 1986, 92: 59-90
doi: 10.1007/BF00250732
|
[8] |
Pallard C. On global smooth solutions to the 3D Vlasov-Nordström system. Ann Inst Henri Poincare Analyse Lineaire, 2006, 23: 85-96
|
[9] |
Calogero S. Global classical solutions to the 3D Nordström-Vlasov system. Comm Math Phys, 2006, 266: 343-353
doi: 10.1007/s00220-006-0029-x
|
[10] |
Fajman D, Joudioux J, Smulevici J. Sharp asymptotics for small data solutions of the Vlasov-Nordström System in three dimensions. preprint, arxiv:1704.05353 [math.AP], https://arxiv.org/abs/1704.05353v1
|
[11] |
Andréasson H, Calogero S, Rein G. Global classical solutions to the spherically symmetric Nordström-Vlasov system. Math Proc Camb Phil Soc, 2005, 138(3): 533-539
doi: 10.1017/S0305004105008467
|
[12] |
Lee Y. Global existence of classical solutions of the Nordström-Vlasov system in two space dimensions. Comm Partial Differential Equations, 2005, 30: 663-687
doi: 10.1081/PDE-200059271
|
[13] |
Calogero S, Rein G. Global weak solutions to the Nordström-Vlasov system. J Differential Equations, 2004, 204: 323-338
doi: 10.1016/j.jde.2004.02.011
|
[14] |
Bostan M. Stationary solutions for the one-dimensional Nordström-Vlasov system. Asymptotic Anal, 2009, 64: 155-183
|
[15] |
Calogero S, Lee Y. The non-relativistic limit of the Nordström-Vlasov system. Comm Math Sci, 2004, 2: 19-34
doi: 10.4310/CMS.2004.v2.n1.a2
|
[16] |
Schaeffer J. The classical limit of the relativistic Vlasov-Maxwell system. Comm Math Phys, 1986, 104: 409-421
|
[17] |
Bostan M. Boundary value problems for the stationary Nordström-Vlasov system. J Korean Math Soc, 2010, 47: 743-766
doi: 10.4134/JKMS.2010.47.4.743
|
[18] |
Calogero S, Calvo J, Sánchez Ó, Soler J. Virial inequalities for steady states in relativistic galactic dynamics. Nonlinearity, 2010, 23: 1851-1871
doi: 10.1088/0951-7715/23/8/004
|
[19] |
Shatah J, Struwe M. Geometric Wave Equations. Courant Lectures Notes in Mathematics, Vol 2. Providence: American Mathematical Society, 1998
|
[20] |
Stein E M. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. New Jersey: Princeton University Press, 1993
|
[21] |
Lions J L, Magenes E. Non-Homogeneous Boundary Value Problems and Applications. Vol 1. Heidelberg: Springer-Verlag, 1972
|
[22] |
Bergh J, Löfström J. Interpolation Spaces: An Introduction. Heidelberg: Springer-Verlag, 1976
|