数学物理学报 ›› 2023, Vol. 43 ›› Issue (3): 702-712.

• • 上一篇    下一篇

Banach空间半线性发展方程周期解的存在性结果及应用

李永祥*(),韦启林()   

  1. 西北师范大学数学与统计学院 兰州730070
  • 收稿日期:2022-03-23 修回日期:2023-02-08 出版日期:2023-06-26 发布日期:2023-06-01
  • 通讯作者: 李永祥 E-mail:liyxnwnu@163.com;weiqilin0918@163.com
  • 作者简介:韦启林, E-mail: weiqilin0918@163.com
  • 基金资助:
    国家自然科学基金(12061062);国家自然科学基金(11661071)

Existence Results of Periodic Solutions for Semilinear Evolution Equation in Banach Spaces and Applications

Li Yongxiang*(),Wei Qilin()   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070
  • Received:2022-03-23 Revised:2023-02-08 Online:2023-06-26 Published:2023-06-01
  • Contact: Yongxiang Li E-mail:liyxnwnu@163.com;weiqilin0918@163.com
  • Supported by:
    NSFC(12061062);NSFC(11661071)

摘要:

该文讨论了 Banach 空间 $X$中抽象半线性发展方程

$ u'(t)+Au(t)=f(t,\,u(t)),\quad t\in {\Bbb R} $

周期解的存在性, 其中 $A:D(A)\subset X\to X$ 为闭线性算子, $ -A$ 生成 $X$上的 $C_{0}$ -半群, $f:{\Bbb R}\times X\to X$ 连续, $f(t,\,x)$ 关于$t$$\omega$为周期. 我们应用算子半群理论、非紧性测度的估计技巧与不动点定理, 获得了该方程 $\omega$ -周期 mild 解的存在性结果, 并给出了在抛物型偏微分方程与弱阻尼波方程中应用的例子.

关键词: 半线性发展方程, 算子半群, 非紧性测度, 周期mild解, 存在性

Abstract:

In this paper, we deal with the existence of periodic solutions for the semilinear evolution equation in a Banach space $X$,

$ u'(t)+Au(t)=f(t,\,u(t)),\quad t\in{\Bbb R}, $

where $A: D(A)\subset X\to X$ is a closed linear operator and $ -A$ generates a $C_{0}$-semigroup $X$, $f:{\Bbb R}\times X\to X$ is a continuous mapping and $f(t,\,x)$ is $\omega$-periodic in $t$. Existence results of $\omega$-periodic mild solutions are obtained by using operator semigroup theory, estimation technique of noncompact measure and fixed point theorem. Examples of applications in parabolic partial differential equations and weakly damped wave equations are present.

Key words: Semilinear evolution equation, Semigroup of linear operators, Measure of noncompactness, Periodic mild solutions, Existence

中图分类号: 

  • O175.15