[1] |
Pollack J, Hubickyj O, Bodenheimer P, Lissauer J, Podolak M, Greenzweig Y. Formation of the giant planets by concurrent accretion of solids and gas. Icarus, 1996, 124(1): 62-85
doi: 10.1006/icar.1996.0190
|
[2] |
Fournier M, Bailleres H, Chanson B. Tree biomechanics: growth, cumulative prestresses, and reorientations. Biomimetics, 1994, 2: 229-251
|
[3] |
Hodge N, Papadopoulos P. Continuum modeling and numerical simulation of cell motility. J Math Biol, 2012, 64(7): 1253-1279
doi: 10.1007/s00285-011-0446-0
pmid: 21710139
|
[4] |
Tsui Y C, Clyne T W. An analytical model for predicting residual stresses in progressively deposited coatings. Part 1: planar geometry. Thin Solid Films, 1997, 306(1): 23-33
doi: 10.1016/S0040-6090(97)00199-5
|
[5] |
Moseley H. On the geometrical forms of turbinated and discoid shells. Phil Trans R Soc Lond, 1838, 128: 351-370
|
[6] |
Thompson D. On Growth and Form. London: Cambridge University Press, 1942
|
[7] |
Illert C. Formulation and solution of the classical problem: II. Tubular three dimensional surfaces. Nuovo Cimento, 1989, 11: 761-780
doi: 10.1007/BF02451562
|
[8] |
Cowin S C. Bone stress adaptation models. J Biomech Eng, 1993, 115: 528-533
doi: 10.1115/1.2895535
|
[9] |
Huiskes R, Hollister S J. From structure to process, from organ to cell: recent developments of FE-analysis in orthopedic biomechanics. J Biomech Eng, 1993, 115: 520-527
doi: 10.1115/1.2895534
|
[10] |
Illert C. Formulation and solution of the classical problem: I. Seashell geometry. Nuovo Cimento, 1987, 9: 791-814
|
[11] |
Yilmaz S, Ünlütürk Y. Contributions to differential geometry of isotropic curves in the complex space ${\Bbb C}^{3}$-II. J Math Anal Appl, 2016, 440: 561-577
doi: 10.1016/j.jmaa.2016.02.072
|
[12] |
Qian J H, Yin P, Fu X S, Wang H Z. Representations of rectifying isotropic curves and their centrodes in complex 3-space. Mathematics, 2021, 9: 1451
doi: 10.3390/math9121451
|
[13] |
Qian J H, Kim Y H. Some isotropic curves and representation in complex space ${\Bbb C}^3$. Bull Korean Math Soc, 2015, 52(3): 963-975
doi: 10.4134/BKMS.2015.52.3.963
|