数学物理学报 ›› 2023, Vol. 43 ›› Issue (2): 581-592.
收稿日期:
2022-05-12
修回日期:
2022-10-17
出版日期:
2023-04-26
发布日期:
2023-04-17
通讯作者:
蔡钢,E-mail:caigang-aaaa@163.com
基金资助:
Received:
2022-05-12
Revised:
2022-10-17
Online:
2023-04-26
Published:
2023-04-17
Supported by:
摘要:
该文提出了一个新的自适应次超梯度粘性算法来求解 Hilbert 空间中的伪单调变分不等式问题. 应用新步长准则, 在不需要知道利普希茨常数的条件下得到了强收敛定理. 通过一些数值例子说明了所提算法的有效性.
中图分类号:
夏平静, 蔡钢. Hilbert 空间中变分不等式问题的自适应粘性算法[J]. 数学物理学报, 2023, 43(2): 581-592.
Xia Pingjing, Cai Gang. Self Adaptive Viscosity Algorithm for Solving Variational Inequality Problem in Hilbert Spaces[J]. Acta mathematica scientia,Series A, 2023, 43(2): 581-592.
[1] |
Censor Y, Elfving T. A multiprojection algorithms using Bregman projection in a product space. Numer Algorithms, 1994, 8: 221-239
doi: 10.1007/BF02142692 |
[2] |
Censor Y, Elfving T, Kopf N, Bortfeld T. The multiple-sets split feasibility problem and its applications for inverse problems. Inverse Problems, 2005, 21: 2071-2084
doi: 10.1088/0266-5611/21/6/017 |
[3] |
Hieu D V, Cho Y J, Xiao Y. Modified extragradient algorithms for solving equilibrium problems. Optimization, 2018, 67: 2003-2029
doi: 10.1080/02331934.2018.1505886 |
[4] | Kinderlehrer D, Stampacchia G. An Introduction to Variational Inequalities and Their Applications. New York: Academic Press, 1980 |
[5] | Baiocchi C, Capelo A.Variational and Quasivariational Inequalities; Applications to Free Boundary Problems. New York: Wiley, 1984 |
[6] | Korpelevich G M. The extragradient method for finding saddle points and other problems. Ekonomikai Matematicheskie Metody, 1976, 12: 747-756 |
[7] |
Censor Y, Gibali A, Reich S. The subgradient extragradient method for solving variational inequalities in Hilbert space. J Optim Theory Appl, 2011, 148: 318-335
doi: 10.1007/s10957-010-9757-3 |
[8] |
Censor Y, Gibali A, Reich S. Extensions of Korpelevich extragradient method for variational inequality problem in Euclidean space. Optimization, 2011, 61: 1119-1132
doi: 10.1080/02331934.2010.539689 |
[9] |
Malitsky Y. Projected reflected gradient methods for monotone variational inequalities. SIAM J Optim, 2015, 25: 502-520
doi: 10.1137/14097238X |
[10] |
Thong D V, Hieu D V. Modified subgradient extragradient method for variational inequality problems. Numer Algorithms, 2018, 79: 597-610
doi: 10.1007/s11075-017-0452-4 |
[11] |
Thong D V, Vinh N T, Cho Y J. A strong convergence theorem for Tseng's extragradient method for solving variational inequality problems. Optim Lett, 2020, 14: 1157-1175
doi: 10.1007/s11590-019-01391-3 |
[12] |
Censor Y, Gibali A, Reich S. Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space. Optim Methods Softw, 2011, 26: 827-845
doi: 10.1080/10556788.2010.551536 |
[13] |
Kraikaew R, Saejung S. Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Hilbert spaces. J Optim Theory Appl, 2014, 163: 399-412
doi: 10.1007/s10957-013-0494-2 |
[14] |
Chuang C S. Hybrid inertial proximal algorithm for the split variational inclusion problem in Hilbert spaces with applications. Optimization, 2017, 66: 777-792
doi: 10.1080/02331934.2017.1306744 |
[15] |
Majee P, Nahak C. On inertial proximal algorithm for split variational inclusion problems. Optimization, 2018, 67: 1701-1716
doi: 10.1080/02331934.2018.1486838 |
[16] |
Thong D V. Viscosity approximation methods for solving fixed-point problems and split common fixed-point problems. J Fixed Point Theory Appl, 2017, 19: 1481-1499
doi: 10.1007/s11784-016-0323-y |
[17] |
Thong D V, Hieu D V, Rassias T M. Self adaptive inertial subgradient extragradient algorithms for solving pseudomonotone variational inequality problems. Optim Lett, 2020, 14: 115-144
doi: 10.1007/s11590-019-01511-z |
[18] | Moudafi A, Elisabeth E. An approximate inertial proximal method using enlargement of a maximal monotone operator. Int J Pure Appl Math, 2003, 5: 283-299 |
[19] |
Alvarez F, Attouch H. An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping. Set-Valued Anal, 2001, 9: 3-11
doi: 10.1023/A:1011253113155 |
[20] |
Opial Z. Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull Am Math Soc, 1967, 73: 591-597
doi: 10.1090/bull/1967-73-04 |
[21] |
Cottle R W, Yao J C. Pseudo-monotone complementarity problems in Hilbert space. J Optim Theory Appl, 1992, 75: 281-295
doi: 10.1007/BF00941468 |
[22] |
Saejung S, Yotkaew P. Approximation of zeros of inverse strongly monotone operators in Banach spaces. Nonlinear Anal, 2012, 75: 742-750
doi: 10.1016/j.na.2011.09.005 |
[23] |
Anh P K, Thong D V, Vinh N T. Improved inertial extragradient methods for solving pseudo-monotone variational inequalities. Optimization, doi: 10.1080/02331934.2020.1808
doi: 10.1080/02331934.2020.1808 |
[24] |
Cholamjiak P, Thong D V, Cho Y J. A novel inertial projection and contraction method for solving pseudomonotone variational inequality problems. Acta Appl Math, 2020, 169: 217-245
doi: 10.1007/s10440-019-00297-7 |
[1] | 杨蓝翔, 陈艺, 叶明露. 一类拟单调变分不等式的惯性投影算法[J]. 数学物理学报, 2023, 43(2): 593-603. |
[2] | 段洁, 夏福全. 求解变分不等式与不动点问题公共解的新Tseng型外梯度算法[J]. 数学物理学报, 2023, 43(1): 274-290. |
[3] | 施翠云,宾茂君. Banach空间中微分变分不等式系统的Bang-Bang准则[J]. 数学物理学报, 2022, 42(6): 1653-1670. |
[4] | 刘丽平,彭建文. 求解变分不等式和不动点问题的公共元的修正次梯度外梯度算法[J]. 数学物理学报, 2022, 42(5): 1517-1536. |
[5] | 杨静,龙宪军. 关于伪单调变分不等式与不动点问题的新投影算法[J]. 数学物理学报, 2022, 42(3): 904-919. |
[6] | 贺月红,龙宪军. 求解伪单调变分不等式问题的惯性收缩投影算法[J]. 数学物理学报, 2021, 41(6): 1897-1911. |
[7] | 万升联. 解变分不等式的一种二次投影算法[J]. 数学物理学报, 2021, 41(1): 237-244. |
[8] | 马国栋. 一般约束极大极小优化问题一个强收敛的广义梯度投影算法[J]. 数学物理学报, 2020, 40(3): 641-649. |
[9] | 蔡钢. Hilbert空间中关于变分不等式问题和不动点问题的粘性隐式中点算法[J]. 数学物理学报, 2020, 40(2): 395-407. |
[10] | 胡雨贤. 求解变分不等式的一种双投影算法[J]. 数学物理学报, 2019, 39(6): 1492-1498. |
[11] | 丘小玲,贾文生. 有限理性下变分不等式的逼近定理[J]. 数学物理学报, 2019, 39(4): 730-737. |
[12] | 罗雪萍, 崔梦天. 自反巴拿赫空间中方向扰动的广义混合变分不等式的可解性[J]. 数学物理学报, 2018, 38(6): 1144-1152. |
[13] | 李茹, 余国林, 刘伟, 刘三阳. 一类广义不变凸函数和向量变分不等式[J]. 数学物理学报, 2017, 37(6): 1029-1039. |
[14] | 蔡钢, Yekini Shehu. q-一致光滑、一致凸Banach空间中关于变分不等式问题和严格伪压缩映射的不动点问题的粘性迭代算法[J]. 数学物理学报, 2016, 36(4): 623-638. |
[15] | 李择均, 孙淑芹. 一个扰动变分不等式的可解性[J]. 数学物理学报, 2016, 36(3): 473-480. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 118
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 97
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|