[1] |
Censor Y, Elfving T. A multiprojection algorithms using Bregman projection in a product space. Numer Algorithms, 1994, 8: 221-239
doi: 10.1007/BF02142692
|
[2] |
Censor Y, Elfving T, Kopf N, Bortfeld T. The multiple-sets split feasibility problem and its applications for inverse problems. Inverse Problems, 2005, 21: 2071-2084
doi: 10.1088/0266-5611/21/6/017
|
[3] |
Hieu D V, Cho Y J, Xiao Y. Modified extragradient algorithms for solving equilibrium problems. Optimization, 2018, 67: 2003-2029
doi: 10.1080/02331934.2018.1505886
|
[4] |
Kinderlehrer D, Stampacchia G. An Introduction to Variational Inequalities and Their Applications. New York: Academic Press, 1980
|
[5] |
Baiocchi C, Capelo A.Variational and Quasivariational Inequalities; Applications to Free Boundary Problems. New York: Wiley, 1984
|
[6] |
Korpelevich G M. The extragradient method for finding saddle points and other problems. Ekonomikai Matematicheskie Metody, 1976, 12: 747-756
|
[7] |
Censor Y, Gibali A, Reich S. The subgradient extragradient method for solving variational inequalities in Hilbert space. J Optim Theory Appl, 2011, 148: 318-335
doi: 10.1007/s10957-010-9757-3
|
[8] |
Censor Y, Gibali A, Reich S. Extensions of Korpelevich extragradient method for variational inequality problem in Euclidean space. Optimization, 2011, 61: 1119-1132
doi: 10.1080/02331934.2010.539689
|
[9] |
Malitsky Y. Projected reflected gradient methods for monotone variational inequalities. SIAM J Optim, 2015, 25: 502-520
doi: 10.1137/14097238X
|
[10] |
Thong D V, Hieu D V. Modified subgradient extragradient method for variational inequality problems. Numer Algorithms, 2018, 79: 597-610
doi: 10.1007/s11075-017-0452-4
|
[11] |
Thong D V, Vinh N T, Cho Y J. A strong convergence theorem for Tseng's extragradient method for solving variational inequality problems. Optim Lett, 2020, 14: 1157-1175
doi: 10.1007/s11590-019-01391-3
|
[12] |
Censor Y, Gibali A, Reich S. Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space. Optim Methods Softw, 2011, 26: 827-845
doi: 10.1080/10556788.2010.551536
|
[13] |
Kraikaew R, Saejung S. Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Hilbert spaces. J Optim Theory Appl, 2014, 163: 399-412
doi: 10.1007/s10957-013-0494-2
|
[14] |
Chuang C S. Hybrid inertial proximal algorithm for the split variational inclusion problem in Hilbert spaces with applications. Optimization, 2017, 66: 777-792
doi: 10.1080/02331934.2017.1306744
|
[15] |
Majee P, Nahak C. On inertial proximal algorithm for split variational inclusion problems. Optimization, 2018, 67: 1701-1716
doi: 10.1080/02331934.2018.1486838
|
[16] |
Thong D V. Viscosity approximation methods for solving fixed-point problems and split common fixed-point problems. J Fixed Point Theory Appl, 2017, 19: 1481-1499
doi: 10.1007/s11784-016-0323-y
|
[17] |
Thong D V, Hieu D V, Rassias T M. Self adaptive inertial subgradient extragradient algorithms for solving pseudomonotone variational inequality problems. Optim Lett, 2020, 14: 115-144
doi: 10.1007/s11590-019-01511-z
|
[18] |
Moudafi A, Elisabeth E. An approximate inertial proximal method using enlargement of a maximal monotone operator. Int J Pure Appl Math, 2003, 5: 283-299
|
[19] |
Alvarez F, Attouch H. An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping. Set-Valued Anal, 2001, 9: 3-11
doi: 10.1023/A:1011253113155
|
[20] |
Opial Z. Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull Am Math Soc, 1967, 73: 591-597
doi: 10.1090/bull/1967-73-04
|
[21] |
Cottle R W, Yao J C. Pseudo-monotone complementarity problems in Hilbert space. J Optim Theory Appl, 1992, 75: 281-295
doi: 10.1007/BF00941468
|
[22] |
Saejung S, Yotkaew P. Approximation of zeros of inverse strongly monotone operators in Banach spaces. Nonlinear Anal, 2012, 75: 742-750
doi: 10.1016/j.na.2011.09.005
|
[23] |
Anh P K, Thong D V, Vinh N T. Improved inertial extragradient methods for solving pseudo-monotone variational inequalities. Optimization, doi: 10.1080/02331934.2020.1808
doi: 10.1080/02331934.2020.1808
|
[24] |
Cholamjiak P, Thong D V, Cho Y J. A novel inertial projection and contraction method for solving pseudomonotone variational inequality problems. Acta Appl Math, 2020, 169: 217-245
doi: 10.1007/s10440-019-00297-7
|