[1] Osborne A R. Nonlinear Ocean Waves and the Inverse Scattering Transform. New York:Academic Press, 2009 [2] Wang L, Zhang J H, Wang Z Q, et al. Breather-to-soliton transitions, nonlinear wave interactions, and modulational instability in a higherorder generalized nonlinear Schrödinger equation. Phys Rev E, 2016, 93(1):012214 [3] 陈登远. 孤子引论. 北京:科学出版社, 2006 Chen D Y. Soliton Theory. Beijing:Science Press, 2006 [4] 李翊神. 孤子与可积系统. 上海:上海科技教育出版社, 1999 Li Y S. Soliton and Integrable System. Shanghai:Shanghai Scientific and Technological Education Publishing House, 1999 [5] Ablowitz M J, Segur H. On the evolution of packets of water waves. J Fluid Mech, 1979, 92(4):691-715 [6] Veni S S, Latha M M. A generalized Davydov model with interspine coupling and its integrable discretization. Phys Scripta, 2012, 86(2):025003 [7] Davydov A S. The role of solitons in the energy and electron transfer in onedimensional molecular systems. Physica D, 1981, 3(1/2):1-22 [8] Hyman J M, McLaughlin D W, Scott A C. On Davydov's alpha-helix solitons. Physica D, 1981, 3(1/2):23-44 [9] Sun W R, Tian B, Wang Y F, Zhen H L. Soliton excitations and interactions for the three-coupled fourth-order nonlinear Schrödinger equations in the alpha helical proteins. Eur Phys J D, 2015, 69(6):Article number 146 [10] Du Z, Tian B, Qu Q X, et al. Semirational rogue waves for the three-coupled fourth-order nonlinear Schrödinger equations in an alpha helical protein. Superlattice Microst, 2017, 112:362-373 [11] Du Z, Tian B, Chai H P, Zhao X H. Lax pair, Darboux transformation and rogue waves for the three-coupled fourth-order nonlinear Schrödinger system in an alpha helical protein. Wave Random Complex, 2021, 31(6):1051-1071 [12] Liu W H, Liu Y, Zhang Y F, Shi D D. Riemann-Hilbert approach for multi-soliton solutions of a fourt-order nonlinear Schrödinger equation. Mod Physics Lett B, 2019, 33:1950416 [13] Ma W X. N-soliton solutions and the Hirota conditions in (1+1)-dimensions. Int J Nonlin Sci Num, 2021, 23(1):123-133 [14] Ma W X. N-soliton solutions and the Hirota conditions in (2+1)-dimensions. Opt Quant Electron, 2020, 52(12):Article number 511 [15] Ma W X. N-soliton solution and the Hirota condition of a (2+1)-dimensional combined equation. Math Comput Simulat, 2021, 190:270-279 [16] Ma W X. N-soliton solution of a combined pKP-BKP equation. J Geom Phys, 2021, 165:104191 [17] Ma W X, Yong X L, Lü X. Soliton solutions to the B-type Kadomtsev-Petviashvili equation under general dispersion relations. Wave Motion, 2021, 103:102719 [18] Wu J P, Geng X G. Inverse scattering transform and soliton classification of the coupled modified Korteweg-de Vries equation. Commun Nonlinear Sci, 2017, 53:83-93 [19] Tian S F, Zhang T T. Long-time asymptotic behavior for the Gerdjikov-Ivanov type of derivative nonlinear Schrödinger equation with time-periodic boundary condition. Proc Amer Math Soc, 2018, 146(4):1713-1729 [20] Wang D S, Zhang D J, Yang J K. Integrable properties of the general coupled nonlinear Schrödinger equations. J Math Phys, 2010, 51(2):023510 [21] Yang J K, Kaup D J. Squared eigenfunctions for the Sasa-Satsuma equation. J Math Phys, 2009, 50(2):023504 [22] Deift P, Zhou X. A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation. Ann Math, 1993, 137(2):295-368 [23] 房春梅, 田守富. 约化的(3+1)维Hirota方程的呼吸波解、Lump解和半有理解. 数学物理学报, 2022, 42A(3):775-783 Fang C M, Tian S F. Breather wave solutions, lump solutions and semi-rational solutions of a reduced (3+1) dimensional Hirota equation. Acta Math Sci, 2022, 42A(3):775-783 [24] Ma W X. Riemann-Hilbert problems and soliton solutions of nonlocal real reverse-spacetime mKdV equations. J Math Anal Appl, 2021, 498(2):124980 [25] Fokas A S, Lenells J. The unified method:I. Nonlinearizable problems on the half-line. J Phys A-Math Theor, 2012, 45(19):195201 [26] Xu J, Fan E G. The unified transform method for the Sasa-Satsuma equation on the half-line. Proc Roy Soc A-Math Phy, 2013, 469(2159):20130068 [27] Xu J, Fan E G. Long-time asymptotics for the Fokas-Lenells equation with decaying initial value problem:Without solitons. J Differ Equations, 2015, 259(3):1098-1148 [28] Wang D S, Guo B L, Wang X L. Long-time asymptotics of the focusing Kundu-Eckhaus equation with nonzero boundary conditions. J Differ Equations, 2019, 266(9):5209-5253 [29] Tian S F. Initial-boundary value problems for the general coupled nonlinear Schrödinger equation on the interval via the Fokas method. J Differ Equations, 2017, 262(1):506-558 [30] Yan Z Y. An initial-boundary value problem for the integrable spin-1 Gross-Pitaevskii equations with a 4times4 Lax pair on the half-line. Chaos, 2017, 27(5):053117 [31] Hu B B, Xia T C, Ma W X. Riemann-Hilbert approach for an initialboundary value problem of the two-component modified Korteweg-de Vries equation on the half-line. Appl Math Comput, 2018, 332:148-159 [32] Guo B L, Ling L M. Riemann-Hilbert approach and N-soliton formula for coupled derivative Schrödinger equation. J Math Phys, 2012, 53(7):073506 [33] Xiao Y, Fan E G. A Riemann-Hilbert approach to the Harry-Dym equation on the line. Chinese Ann Math B, 2016, 37(3):373-384 [34] Ma W X. Riemann-Hilbert problems of a six-component fourth-order AKNS system and its soliton solutions. Comput Appl Math, 2018, 37(5):6359-6375 [35] Zhang Y S, Rao J G, Cheng Y, He J S. Riemann-Hilbert method for the Wadati-Konno-Ichikawa equation:N simple poles and one higher-order pole. Phys D, 2019, 399:173-185 [36] Wei H Y, Fan E G, Guo H D. Riemann-Hilbert approach and nonlinear dynamics of the coupled higher-order nonlinear Schrödinger equation in the birefringent or two-mode fiber. Nonlinear Dynam, 2021, 104(1):649-660 |