数学物理学报 ›› 2022, Vol. 42 ›› Issue (6): 1719-1728.
收稿日期:
2022-01-07
出版日期:
2022-12-26
发布日期:
2022-12-16
通讯作者:
张贻民
E-mail:weijunpingacca@163.com;hhuangxiaomeng@126.com;zhangym802@126.com
作者简介:
魏均平, E-mail: 基金资助:
Junping Wei(),Xiaomeng Huang(
),Yimin Zhang*(
)
Received:
2022-01-07
Online:
2022-12-26
Published:
2022-12-16
Contact:
Yimin Zhang
E-mail:weijunpingacca@163.com;hhuangxiaomeng@126.com;zhangym802@126.com
Supported by:
摘要:
该文主要讨论一般非线性项情形下一类分数阶Kirchhoff型约束变分问题在空间
中图分类号:
魏均平,黄小梦,张贻民. 分数阶Kirchhoff型约束变分问题Schwarz对称极小解的存在性[J]. 数学物理学报, 2022, 42(6): 1719-1728.
Junping Wei,Xiaomeng Huang,Yimin Zhang. Existence of Schwarz Symmetric Minimizers for Fractional Kirchhoff Constrained Variational Problem[J]. Acta mathematica scientia,Series A, 2022, 42(6): 1719-1728.
1 | Amick C J , Toland J F . Uniqueness and related analytic properties for the Benjamin-Ono equation-a nonlinear Neumann problem in the plane. Acta Mathematica, 1991, 167 (1): 107- 126 |
2 |
Chen W X , Li C M , Ou B . Classification of solutions for an integral equation. Communications on Pure and Applied Mathematics, 2006, 59 (3): 330- 343
doi: 10.1002/cpa.20116 |
3 |
Nezza E Di , Palatucci G , Valdinoci E . Hitchhiker's guide to the fractional Sobolev spaces. Bull Sci Math, 2012, 136 (5): 521- 573
doi: 10.1016/j.bulsci.2011.12.004 |
4 | Ou B , Li C , Chen W . Qualitative properties of solutions for an integral equation. Discrete and Continuous Dynamical Systems-Series A, 2017, 12 (2): 347- 354 |
5 | Li Y Y . Remark on some conformally invariant integral equations: the method of moving spheres. Journal of the European Mathematical Society, 2004, 6 (2): 153- 180 |
6 |
Frank R L , Lenzmann E . Uniqueness of non-linear ground states for fractional Laplacians in ![]() ![]() doi: 10.1007/s11511-013-0095-9 |
7 | Frank R L , Lenzmann E , Silvestre L . Uniqueness of radial solutions for the fractional Laplacian. Communications on Pure and Applied Mathematics, 2013, 69 (9): 1671- 1726 |
8 |
成艺群, 滕凯民. 非线性临界Kirchhoff型问题的正基态解. 数学物理学报, 2021, 41A (3): 666- 685
doi: 10.3969/j.issn.1003-3998.2021.03.008 |
Cheng Y Q , Teng K M . Positive ground state solutions for nonlinear critical Kirchhoff type problem. Acta Mathematica Scientia, 2021, 41A (3): 666- 685
doi: 10.3969/j.issn.1003-3998.2021.03.008 |
|
9 |
Deng Y B , Peng S J , Shuai W . Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in ![]() ![]() doi: 10.1016/j.jfa.2015.09.012 |
10 |
郭合林, 王云波. 关于一个约束变分问题的注记. 数学物理学报, 2017, 37A (6): 1125- 1128
doi: 10.3969/j.issn.1003-3998.2017.06.012 |
Guo H L , Wang Y B . A remark on a constrained variational problem. Acta Mathematica Scientia, 2017, 37A (6): 1125- 1128
doi: 10.3969/j.issn.1003-3998.2017.06.012 |
|
11 |
Ye H Y . The sharp existence of constrained minimizers for a class of nonlinear Kirchhoff equations. Math Methods Appl Sci, 2015, 38 (13): 2663- 2679
doi: 10.1002/mma.3247 |
12 |
柳志德, 王征平. 非线性Kirchhoff型椭圆方程的最低能量解. 数学物理学报, 2019, 39A (2): 264- 276
doi: 10.3969/j.issn.1003-3998.2019.02.006 |
Liu Z D , Wang Z P . Least energy solution for nonlinear Kirchhoff type elliptic equation. Acta Mathematica Scientia, 2019, 39A (2): 264- 276
doi: 10.3969/j.issn.1003-3998.2019.02.006 |
|
13 |
魏美春, 唐春雷. ![]() ![]() |
Wei M C , Tang C L . Existence and multiplicity of nontrivial solutions for Kirchhoff-type problem in begin{document}![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
14 |
梁文翠, 张正杰. Kirchhoff型方程有关的非线性方程多解的存在性. 数学物理学报, 2020, 40A (4): 842- 849
doi: 10.3969/j.issn.1003-3998.2020.04.002 |
Liang W C , Zhang Z J . Multiple solutions for nonlinear equations related to Kirchhoff type equations. Acta Mathematica Scientia, 2020, 40A (4): 842- 849
doi: 10.3969/j.issn.1003-3998.2020.04.002 |
|
15 |
Mao A M , Zhang Z T . Sign-changing and multiple solutions of Kirchhoff type problems without P.S. condition. Nonlinear Anal, 2009, 70 (3): 1275- 1287
doi: 10.1016/j.na.2008.02.011 |
16 |
He X M , Zou W M . Existence and concentration behavior of positive solutions for a Kirchhoff equation in ![]() ![]() doi: 10.1016/j.jde.2011.08.035 |
17 | Li G B , Niu Y H . The existence and local uniqueness of multi-peak positive solutions to a class of Kirchhoff equation. Acta Mathematica Scientia, 2020, 40B (1): 90- 112 |
18 | 许诗敏, 王春花. Kirchhoff方程单峰解的局部唯一性. 数学物理学报, 2020, 40A (2): 432- 440 |
Xu S M , Wang C H . Local uniqueness of a single peak solution of a subcritical Kirchhoff problem in begin{document}![]() ![]() |
|
19 | Zeng X Y , Zhang Y M . Existence and uniqueness of normalized solutions for the Kirchhoff equation. Applied Math Letters, 2017, 74, 52- 59 |
20 | Guo H L , Zhang Y M , Zhou H S . Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. Commun Pure Appl Aanl, 2018, 17 (5): 1875- 1897 |
21 | 李容星, 王文清, 曾小雨. 带椭球势阱的Kirchhoff型方程的变分问题. 数学物理学报, 2019, 39A (6): 1323- 1333 |
Li R X , Wang W Q , Zeng X Y . A constrained variational problem of Kirchhoff type equation with ellipsoid-shaped potential. Acta Mathematica Scientia, 2019, 39A (6): 1323- 1333 | |
22 | Liu Z S, Squassina M, Zhang J J. Ground states for fractional Kirchhoff equations with critical nonlinearity in low dimension. Nonlinear Differential Equations and Applications, 2017, 24: Article number 50 |
23 |
Cheng K , Gao Q . Sign-changing solutions for the stationary Kirchhoff problems involving the fractional Laplacian in ![]() ![]() |
24 |
Pucci P , Xiang M Q , Zhang B L . Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff equations involving the fractional p-Laplacian in ![]() ![]() |
25 | Huang X M , Zhang Y M . Existence and uniqueness of minimizers for L2-constrained problems related to fractional Kirchhoff equation. Mathematical Methods in the Applied Sciences, 2020, 43 (15): 8763- 8775 |
26 | Frank R L , Seiringer R . Non-linear ground state representations and sharp Hardy inequalities. J Fun Anal, 2008, 255 (12): 3407- 3430 |
27 | Burchard A , Hajaiej H . Rearrangement inequalities for functionals with monotone integrands. Journal of Functional Analysis, 2006, 233 (2): 561- 582 |
[1] | 杨迎,沈烈军. Chern-Simons-Schrödinger方程能量泛函的L2约束极小化问题[J]. 数学物理学报, 2022, 42(3): 716-729. |
[2] | 杨连峰,曾小雨. 拟相对论薛定谔方程基态解的存在性与爆破行为[J]. 数学物理学报, 2022, 42(1): 165-175. |
[3] | 李振杰,李磊. 带有凸非线性项的分数阶Laplace方程的解的对称性[J]. 数学物理学报, 2020, 40(5): 1224-1234. |
[4] | 李容星,王文清,曾小雨. 带椭球势阱的Kirchhoff型方程的变分问题[J]. 数学物理学报, 2019, 39(6): 1323-1333. |
[5] | 郭合林, 王云波. 关于一个约束变分问题的注记[J]. 数学物理学报, 2017, 37(6): 1125-1128. |
[6] | 谷龙江, 孙志禹, 曾小雨. 一类约束变分问题极小元的存在性及其集中行为[J]. 数学物理学报, 2017, 37(3): 510-518. |
[7] | 李静, 陈才生. RN上一类拟线性Schrödinger方程的Nehari流形解[J]. 数学物理学报, 2016, 36(3): 507-520. |
[8] | 朱文兴. 总体优化一类双参数填充函数算法的改进[J]. 数学物理学报, 1999, 19(5): 550-558. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 170
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 105
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|