1 |
Ahern P , $\breve{\rm C}$u$\breve{\rm c}$kovi$\acute{\rm c}$ $\breve{\rm Z}$ . A theorem of Brown-Halmos type for Bergman space Toeplitz operators. J Funct Anal, 2001, 187: 200- 210
doi: 10.1006/jfan.2001.3811
|
2 |
Brown A , Halmos P R . Algebraic properties of Toeplitz operator. J Reine Angew Math, 1964, 213: 89- 102
|
3 |
Chen Y , Lee Y J , Zhao Y L . Complex symmetry of Toeplitz operators. Banach J Math Appl, 2022, 16: 15
doi: 10.1007/s43037-021-00171-5
|
4 |
Gao Y , Zhou Z H . Complex symmetric composition operators induced by linear fractional maps. Indiana Univ Math J, 2020, 69: 367- 384
doi: 10.1512/iumj.2020.69.7622
|
5 |
Garcia S R , Putinar M . Complex symmetric operators and applications. Trans Am Math Soc, 2006, 358: 1285- 1315
|
6 |
Garcia S R , Wogen W R . Complex symmetric partial isometries. J Funct Anal, 2009, 257: 1251- 1260
doi: 10.1016/j.jfa.2009.04.005
|
7 |
Gu C. Algebraic Properties of Truncated Hankel Operators. Preprint
|
8 |
Jurasik J , Lanucha B . Asymmetric truncated Toeplitz operators equal to the zero operator. Ann Univ Mariae Curie-Sklodowska Sect A, 2016, 70: 51- 62
|
9 |
Kang D , Kim H J . Products of truncated Hankel operators. J Math Anal Appl, 2016, 435: 1804- 1811
doi: 10.1016/j.jmaa.2015.11.019
|
10 |
Ko E , Lee J E . On complex symmetric Toeplitz operators. J Math Anal Appl, 2016, 434: 20- 34
doi: 10.1016/j.jmaa.2015.09.004
|
11 |
Li R , Yang Y X , Lu Y F . A class of complex symmetric Toeplitz operators on Hardy and Bergman spaces. J Math Anal Appl, 2020, 489 (2): 124173
|
12 |
Martinez-Avendano R . When do Toeplitz and Hankel operators commute?. Integr Equ Oper Theory, 2000, 37: 341- 349
|
13 |
Sarason D . Algebraic properties of truncated Toeplitz operators. Oper Matrices, 2007, 1: 491- 526
|
14 |
Sedlock N . Algebras of truncated Toeplitz operators. Oper Matrices, 2011, 5: 309- 326
|
15 |
Wang M F , Han K . Complex symmetric weighted composition operators in several variables. J Math Anal Appl, 2019, 474: 961- 987
|
16 |
Zhu S , Li C G . Complex symmetric weighted shifts. Trans Amer Math Soc, 2013, 365: 511- 530
|