数学物理学报 ›› 2022, Vol. 42 ›› Issue (4): 1150-1172.
收稿日期:
2021-09-24
出版日期:
2022-08-26
发布日期:
2022-08-08
作者简介:
邵志强, E-mail: 基金资助:
Received:
2021-09-24
Online:
2022-08-26
Published:
2022-08-08
Supported by:
摘要:
该文研究带有复合源项的一维可压缩流体欧拉方程组的黎曼问题, 其中源项可以是摩擦项, 也可以是阻尼项, 也可以是阻尼和摩擦两者都具有. 与齐次型不同, 非齐次守恒律方程组的黎曼解是非自相似的. 当绝热指数
中图分类号:
邵志强. 一维具有阻尼和摩擦项的可压缩流体欧拉方程组当压力消失时黎曼解的极限[J]. 数学物理学报, 2022, 42(4): 1150-1172.
Zhiqiang Shao. Concentration and Cavitation in the Pressureless Limit of Euler Equations of Compressible Fluid Flow with Damping and Friction[J]. Acta mathematica scientia,Series A, 2022, 42(4): 1150-1172.
1 | Chaplygin S . On gas jets. Sci Mem Moscow Univ Math Phys, 1904, 21: 1- 121 |
2 |
Tsien H S . Two dimensional subsonic flow of compressible fluids. J Aeron Sci, 1939, 6: 399- 407
doi: 10.2514/8.916 |
3 |
Von Karman T . Compressibility effects in aerodynamics. J Aeron Sci, 1941, 8: 337- 356
doi: 10.2514/8.10737 |
4 | Shen C . The Riemann problem for the pressureless Euler system with the Coulomb-like friction term. IMA J Appl Math, 2016, 81: 76- 99 |
5 | Faccanoni G , Mangeney A . Exact solution for granular flows. Int J Numer Anal Meth Geomech, 2012, 37: 1408- 1433 |
6 | Earnshaw S . On the mathematical theory of sound. Philos Trans, 1858, 150: 1150- 1154 |
7 |
Lu Y G . Existence of global entropy solutions to a nonstrictly hyperbolic system. Arch Ration Mech Anal, 2005, 178: 287- 299
doi: 10.1007/s00205-005-0379-0 |
8 |
Cheng Z . Global entropy solutions to a variant of the compressible Euler equations. Appl Math Lett, 2008, 21: 410- 415
doi: 10.1016/j.aml.2007.03.022 |
9 |
Klainerman S , Majda A . Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Comm Pure Appl Math, 1981, 34: 481- 524
doi: 10.1002/cpa.3160340405 |
10 |
Oelschläger K . On the connection between Hamiltonian many-particle systems and the hydrodynamical equation. Arch Ration Mech Anal, 1991, 115: 297- 310
doi: 10.1007/BF00375277 |
11 |
Oelschläger K . An integro-differential equation modelling a Newtonian dynamics and its scaling limit. Arch Ration Mech Anal, 1997, 137: 99- 134
doi: 10.1007/s002050050024 |
12 |
Caprino S , Esposito R , Marra R , Pulvirenti M . Hydrodynamic limits of the Vlasov equation. Comm Partial Differential Equations, 1993, 18: 805- 820
doi: 10.1080/03605309308820951 |
13 | Cheng H , Yang H , Zhang Y . Riemann problem for the Chaplygin Euler equations of compressible fluid flow. Int J Nonlinear Sci Numer Simul, 2010, 11: 985- 992 |
14 |
DiPerna R J . Global solutions to a class of nonlinear hyperbolic systems of equations. Comm Pure Appl Math, 1973, 26: 1- 28
doi: 10.1002/cpa.3160260102 |
15 |
Li C Z . Existence in the large for certain systems of quasi linear hyperbolic conservation laws. J Differential Equations, 1982, 45: 85- 102
doi: 10.1016/0022-0396(82)90056-0 |
16 |
Pang Y , Zhang Y , Wen Y . Delta shock wave to the compressible fluid flow with the generalized Chaplygin gas. Int J Nonlinear Mech, 2018, 99: 311- 318
doi: 10.1016/j.ijnonlinmec.2017.12.014 |
17 | Sarrico C O R , Paiva A . The multiplication of distributions in the study of a Riemann problem in fluid dynamics. J Nonlinear Math Phys, 2017, 24: 328- 345 |
18 |
Song G , Xiao J . Existence of global weak solutions to a special system of Euler equation with a source (Ⅱ): General case. J Math Anal Appl, 2009, 352: 943- 953
doi: 10.1016/j.jmaa.2008.11.051 |
19 |
Sheng S , Shao Z . Concentration of mass in the pressureless limit of the Euler equations of one-dimensional compressible fluid flow. Nonlinear Analysis: Real World Applications, 2020, 52: 103039
doi: 10.1016/j.nonrwa.2019.103039 |
20 |
Sheng S , Shao Z . The limits of Riemann solutions to Euler equations of compressible fluid flow with a source term. Journal of Engineering Mathematics, 2020, 125: 1- 22
doi: 10.1007/s10665-020-10066-3 |
21 |
Savage S B , Hutter K . The motion of a finite mass of granular material down a rough incline. J Fluid Mech, 1989, 199: 177- 215
doi: 10.1017/S0022112089000340 |
22 |
Shen C . The Riemann problem for the Chaplygin gas equations with a source term. Z Angew Math Mech, 2016, 96: 681- 695
doi: 10.1002/zamm.201500015 |
23 |
Sun M . The exact Riemann solutions to the generalized Chaplygin gas equations with friction. Commun Nonlinear Sci Numer Simul, 2016, 36: 342- 353
doi: 10.1016/j.cnsns.2015.12.013 |
24 |
Daw D A E , Nedeljkov M . Shadow waves for pressureless gas balance laws. Appl Math Lett, 2016, 57: 54- 59
doi: 10.1016/j.aml.2016.01.004 |
25 | Edwards C M , Howison S D , Ockendon H , Ockendon J R . Non-classical shallow water flows. IMA J Appl Math, 2008, 73: 137- 157 |
26 |
Guo L , Li T , Yin G . The limit behavior of the Riemann solutions to the generalized Chaplygin gas equations with a source term. J Math Anal Appl, 2017, 455: 127- 140
doi: 10.1016/j.jmaa.2017.05.048 |
27 |
Guo L , Li T , Yin G . The vanishing pressure limits of Riemann solutions to the Chaplygin gas equations with a source term. Commun Pure Appl Anal, 2017, 16: 295- 309
doi: 10.3934/cpaa.2017014 |
28 |
Zhang Y , Zhang Y . Riemann problems for a class of coupled hyperbolic systems of conservation laws with a source term. Commun Pure Appl Anal, 2019, 18: 1523- 1545
doi: 10.3934/cpaa.2019073 |
29 |
Zhang Y , Zhang Y . The Riemann problem for the Suliciu relaxation system with the double-coefficient Coulomb-like friction terms. Int J Non-Linear Mech, 2019, 116: 200- 210
doi: 10.1016/j.ijnonlinmec.2019.07.004 |
30 |
Zhang Y , Zhang Y , Wang J . Zero-exponent limit to the extended Chaplygin gas equations with friction. Bull Malays Math Sci Soc, 2021, 44: 3571- 3599
doi: 10.1007/s40840-021-01133-8 |
31 |
Zhang Q . Concentration in the flux approximation limit of Riemann solutions to the extended Chaplygin gas equations with friction. J Math Phys, 2019, 60: 101508
doi: 10.1063/1.5085233 |
32 |
Yin G , Chen J . Existence and stability of Riemann solution to the Aw-Rascle model with friction. Indian J Pure Appl Math, 2018, 49: 671- 688
doi: 10.1007/s13226-018-0294-3 |
33 |
Sheng S , Shao Z . The vanishing adiabatic exponent limits of Riemann solutions to the isentropic Euler equations for power law with a Coulomb-like friction term. J Math Phys, 2019, 60: 101504
doi: 10.1063/1.5108863 |
34 |
Bourgault Y , Habashi W G , Dompierre J , Baruzzi G S . A finite element method study of Eulerian droplets impingement models. Internat. J Numer Methods Fluids, 1999, 29: 429- 449
doi: 10.1002/(SICI)1097-0363(19990228)29:4<429::AID-FLD795>3.0.CO;2-F |
35 | Boutanios Z, Bourgault Y, Cober S, et al. 3D droplets impingement analysis around an aircraft's nose and cockpit using FENSAP-ICE[C]//36th AIAA Aerospace Science Meeting and Exhibit, Reno, NV, USA, 1998. DOI: 10.2514/6.1998-200 |
36 | Bourgault Y, Thiriet M. Critical aspects of flow and aerosol simulations in the airway tract[C]//European Conference on Computational Fluid Dynamics-ECCOMAS CFD 2008, Venice, Italy, 2008 |
37 |
Keita S , Bourgault Y . Eulerian droplet model: Delta-shocks and solution of the Riemann problem. J Math Anal Appl, 2019, 472: 1001- 1027
doi: 10.1016/j.jmaa.2018.11.061 |
38 | Bourgault Y. Computing gas-particle flows in airways with an Eulerian model[C]//European Conference on Computational Fluid Dynamics - ECCOMAS CFD 2006, Egmond ann Zee, The Netherlands, 2006 |
39 |
Keita S , Bourgault Y . Eulerian models with particle pressure for air-particle flows. European Journal of Mechanics-/B Fluids, 2019, 78: 263- 275
doi: 10.1016/j.euromechflu.2019.08.001 |
40 |
Chen G Q , Liu H . Formation of δ -shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids. SIAM J Math Anal, 2003, 34: 925- 938
doi: 10.1137/S0036141001399350 |
41 |
Chen G Q , Liu H . Concentration and cavitation in the vanishing pressure limit of solutions to the Euler equations for nonisentropic fluids. Phys D, 2004, 189: 141- 165
doi: 10.1016/j.physd.2003.09.039 |
42 |
Li J . Note on the compressible Euler equations with zero temperature. Appl Math Lett, 2001, 14: 519- 523
doi: 10.1016/S0893-9659(00)00187-7 |
43 |
Ibrahim M , Liu F , Liu S . Concentration of mass in the pressureless limit of Euler equations for power law. Nonlinear Anal Real World Appl, 2019, 47: 224- 235
doi: 10.1016/j.nonrwa.2018.10.015 |
44 |
Li H , Shao Z . Delta shocks and vacuum states in vanishing pressure limits of solutions to the relativistic Euler equations for generalized Chaplygin gas. Commun Pure Appl Anal, 2016, 15: 2373- 2400
doi: 10.3934/cpaa.2016041 |
45 |
Shen C . The limits of Riemann solutions to the isentropic magnetogasdynamics. Appl Math Lett, 2011, 24: 1124- 1129
doi: 10.1016/j.aml.2011.01.038 |
46 |
Shen C , Sun M . Formation of delta shocks and vacuum states in the vanishing pressure limit of Riemann solutions to the perturbed Aw-Rascle model. J Differential Equations, 2010, 249: 3024- 3051
doi: 10.1016/j.jde.2010.09.004 |
47 |
Shen C , Sun M , Wang Z . Limit relations for three simple hyperbolic systems of conservation laws. Math Methods Appl Sci, 2010, 33: 1317- 1330
doi: 10.1002/mma.1248 |
48 |
Sun M . Concentration and cavitation phenomena of Riemann solutions for the isentropic Euler system with the logarithmic equation of state. Nonlinear Anal Real World Appl, 2020, 53: 103068
doi: 10.1016/j.nonrwa.2019.103068 |
49 |
Tong M , Shen C . The limits of Riemann solutions for the isentropic Euler system with extended Chaplygin gas. Applicable Analysis, 2019, 98: 2668- 2687
doi: 10.1080/00036811.2018.1469009 |
50 |
Sheng W , Wang G , Yin G . Delta wave and vacuum state for generalized Chaplygin gas dynamics system as pressure vanishes. Nonlinear Anal Real World Appl, 2015, 22: 115- 128
doi: 10.1016/j.nonrwa.2014.08.007 |
51 |
Sun M . The limits of Riemann solutions to the simplified pressureless Euler system with flux approximation. Math Methods Appl Sci, 2018, 41: 4528- 4548
doi: 10.1002/mma.4912 |
52 |
Yang H , Wang J . Delta shocks and vacuum states in vanishing pressure limits of solutions to the isentropic Euler equations for modified Chaplygin gas. J Math Anal Appl, 2014, 413: 800- 820
doi: 10.1016/j.jmaa.2013.12.025 |
53 |
Yang H , Zhang Y . Flux approximation to the isentropic relativistic Euler equations. Nonlinear Anal, 2016, 133: 200- 227
doi: 10.1016/j.na.2015.12.002 |
54 |
Yin G , Sheng W . Delta shocks and vacuum states in vanishing pressure limits of solutions to the relativistic Euler equations for polytropic gases. J Math Anal Appl, 2009, 355: 594- 605
doi: 10.1016/j.jmaa.2009.01.075 |
55 | Yin G , Sheng W . Delta shocks and vacuum states in vanishing pressure limits of solutions to the relativistic Euler equations. Chin Ann Math, 2008, 29B: 611- 622 |
56 |
Yin G , Sheng W . Delta wave formation and vacuum state in vanishing pressure limit for system of conservation laws to relativistic fluid dynamics. Z Angew Math Mech, 2015, 95: 49- 65
doi: 10.1002/zamm.201200148 |
57 |
Zhang Y , Yang H . Flux-approximation limits of solutions to the relativistic Euler equations for polytropic gas. J Math Anal Appl, 2016, 435: 1160- 1182
doi: 10.1016/j.jmaa.2015.11.012 |
58 | Zhang Y , Zhang Y . Delta-shocks and vacuums in the relativistic Euler equations for isothermal fluids with the flux approximation. J Math Phys, 2019, 60: 011508 |
59 | Sheng W, Zhang T. The Riemann Problem for the Transportation Equations in Gas Dynamics. Providence, RI: Amer Math Soc, 1999 |
60 | Joseph K T . A Riemann problem whose viscosity solutions contain delta measures. Asymptot Anal, 1993, 7: 105- 120 |
[1] | 陈雨风,陈停停,王振. 非等熵Chaplygin气体测度值解存在性[J]. 数学物理学报, 2020, 40(4): 833-841. |
[2] | 张庆玲,巴英. 带群集耗散项的零压流方程的扰动黎曼问题[J]. 数学物理学报, 2020, 40(1): 49-62. |
[3] | 潘丽君,韩欣利,李彤. 色谱方程的广义黎曼问题:含有Delta激波[J]. 数学物理学报, 2019, 39(6): 1300-1313. |
[4] | 李华惠, 邵志强. 压力消失时具有广义Chaplygin气体的Aw-Rascle交通模型Riemann解的极限[J]. 数学物理学报, 2017, 37(5): 917-930. |
[5] | 李华惠, 邵志强. 用分离的Delta函数法研究非对称Keyfitz-Kranzer系统中Delta激波的交互性[J]. 数学物理学报, 2017, 37(4): 714-729. |
[6] | 陆云光, 宣本金. 一组双曲型方程组的Riemann问题[J]. 数学物理学报, 1996, 16(2): 187-194. |
|