数学物理学报 ›› 2022, Vol. 42 ›› Issue (2): 338-352.

• 论文 • 上一篇    下一篇

R1上莫朗测度关于几何平均误差的最优Voronoi分划

曹毅()   

  1. 江苏理工学院 江苏常州 213001
  • 收稿日期:2021-08-02 出版日期:2022-04-26 发布日期:2022-04-18
  • 作者简介:曹毅, E-mail: cy@jsut.edu.cn
  • 基金资助:
    国家自然科学基金(11571144)

On the Optimal Voronoi Partitions for Moran Measures on R1 with Respect to the Geometric Mean Error

Yi Cao()   

  1. School of Mathematics and Physics, Jiangsu University of Technology, Jiangsu Changzhou 213001
  • Received:2021-08-02 Online:2022-04-26 Published:2022-04-18
  • Supported by:
    the NSFC(11571144)

摘要:

ER1上由有界闭区间J, (nk)k=1Ck=((ck,j)j=1nk)k1确定的莫朗集. μE上由正概率向量序列(Pk)k1所确定的一个莫朗测度. μ关于几何平均误差的所有n -最优集组成的集簇记为Cn(μ). 设αnCn(μ)αn对应的任一Voronoi分划{Pa(αn)}aαn. 证明了 对于每个aαn, Pa(αn)包含一个以a为中心, 半径为d2|Pa(αn)E|的闭区间, 其中d2是一个常数,|B|是集合BR1的直径. 记en(μ)μ上的n -级几何平均误差及e^n(μ):=logen(μ), 证明了e^n(μ)e^n+1(μ)n1.

关键词: 几何平均误差, 最优Voronoi分划, 莫朗测度

Abstract:

Let E be a Moran set on R1 associated with a bounded closed interval J and two sequences (nk)k=1 and Ck=((ck,j)j=1nk)k1 of numbers. Let μ be the Moran measure on E determined by a sequence (Pk)k1 of positive probability vectors. For every n1, let Cn(μ) denote the collection of all the n-optimal sets for μ with respect to the geometric mean error; let αnCn(μ) and {Pa(αn)}aαn be an arbitrary Voronoi partition with respect to αn. We prove that For each aαn, we show that the set Pa(αn) contains a closed interval of radius d2|Pa(αn)E| which is centered at a, where d2 is a constant and |B| denotes the diameter of a set BR1. Let en(μ) denote the nth geometric mean error for μ and e^n(μ):=logen(μ). We show that e^n(μ)e^n+1(μ)n1.

Key words: Geometric mean error, Optimal Voronoi partition, Moran measure

中图分类号: 

  • O174.1