数学物理学报 ›› 2022, Vol. 42 ›› Issue (1): 9-17.

• 论文 • 上一篇    下一篇

$B$值弱Orlicz $\alpha$拟鞅空间的原子分解

张传洲1,2,*(),李甜甜1,2,焦樊1,2   

  1. 1 武汉科技大学理学院 武汉 430065
    2 武汉科技大学冶金工业过程系统科学湖北省重点实验室 武汉 430081
  • 收稿日期:2021-01-11 出版日期:2022-02-01 发布日期:2022-02-23
  • 通讯作者: 张传洲 E-mail:zczwust@163.com
  • 基金资助:
    国家自然科学基金(11871195)

Atomic Aecompositions of $B$-Valued Weak Orlicz $\alpha$-Quasi-Martingale Spaces

Chuanzhou Zhang1,2,*(),Tiantian Li1,2,Fan Jiao1,2   

  1. 1 School of Science, Wuhan University of Science and Technology, Wuhan 430065
    2 Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan 430081
  • Received:2021-01-11 Online:2022-02-01 Published:2022-02-23
  • Contact: Chuanzhou Zhang E-mail:zczwust@163.com
  • Supported by:
    the NSFC(11871195)

摘要:

众所周知,原子分解是研究鞅空间的有力工具,可以简洁有效地处理问题.该文定义了几种弱Orlicz $\alpha $拟鞅空间和三种拟原子,并建立了强原子分解定理.通过原子分解,证明了这些空间上次线性算子的有界性以及这些空间之间的连续嵌入关系.

关键词: 弱Orlicz空间, $\alpha$拟鞅空间, 原子分解, 次线性算子

Abstract:

As we all know, atomic decompositions is a powerful tool for studying martingale space, which can deal with problems concisely and effectively. In this paper, we define several types of weak Orlicz $\alpha $-quasi-martingale spaces and three types of quasi-atoms, and establish the strong atomic decomposition theorems. By atomic decompositions, we prove the boundedness of sublinear operators on these spaces and the continuous embedding relationship between these spaces.

Key words: Weak Orlicz spaces, $\alpha$-Quasi-martingale spaces, Atomic decompositions, Sublinear operators

中图分类号: 

  • O211.6