数学物理学报 ›› 2022, Vol. 42 ›› Issue (1): 282-305.

• 论文 • 上一篇    下一篇

依时变化的随机环境中的分枝随机游动的局部极限定理的二阶展开

高志强()   

  1. 北京师范大学数学科学学院 & 教育部数学与复杂系统实验室 北京 100875
  • 收稿日期:2019-12-25 出版日期:2022-02-26 发布日期:2022-02-23
  • 作者简介:高志强, E-mail: gaozq@bnu.edu.cn
  • 基金资助:
    国家自然科学基金(11971063)

A Second Order Correction of the Local Limit Theorem for a Branching Random Walk with a Random Environment in Time on ${\mathbb{Z}}^d$

Zhiqiang Gao()   

  1. Laboratory of Mathematics and Complex Systems(Ministry of Education) & School of Mathematical Sciences, Beijing Normal University, Beijing 100875
  • Received:2019-12-25 Online:2022-02-26 Published:2022-02-23
  • Supported by:
    the NSFC(11971063)

摘要:

考虑了${\mathbb{Z}}^d$中随机环境中的分枝随机游动, 其中分枝机制和粒子迁移的分布律均依时间变化.对任意给定点$z\in{\mathbb{Z}}^d$, 令$Z_n (z)$表示位于该点处的$n$代粒子的个数.给出了$Z_n (z)$的二阶渐近展开表达式.

关键词: 分枝随机游动, 局部极限定理, 渐近展开

Abstract:

Consider a branching random walk on ${\mathbb{Z}}^d$ with a random environment in time, where the branching offspring distribution and the migration law change as times goes by. Under the mild moment conditions, we derive the second order expansion for $Z_n(z)$, which counts the number of particles of generation $n$ at $z\in {\mathbb{Z}}^d$.

Key words: Branching random walk, Local limit theorem, Asymptotic expansions

中图分类号: 

  • O211.6