数学物理学报 ›› 2022, Vol. 42 ›› Issue (1): 282-305.
收稿日期:
2019-12-25
出版日期:
2022-02-26
发布日期:
2022-02-23
作者简介:
高志强, E-mail: 基金资助:
Received:
2019-12-25
Online:
2022-02-26
Published:
2022-02-23
Supported by:
摘要:
考虑了
中图分类号:
高志强. 依时变化的随机环境中的分枝随机游动的局部极限定理的二阶展开[J]. 数学物理学报, 2022, 42(1): 282-305.
Zhiqiang Gao. A Second Order Correction of the Local Limit Theorem for a Branching Random Walk with a Random Environment in Time on
1 | Asmussen S, Hering H. Branching Processes. Boston: Birkhäuser Boston, 1983 |
2 | Révész P . Random Walks of Infinitely Many Particles. River Edge: World Scientific Publishing Co, 1994 |
3 | Harris T E . The Theory of Branching Processes. Berlin: Springer-Verlag, 1963 |
4 |
Asmussen S , Kaplan N . Branching random walks. Ⅰ. Stochastic Process Appl, 1976, 4 (1): 1- 13
doi: 10.1016/0304-4149(76)90022-3 |
5 | Gao Z Q , Liu Q , Wang H . Central limit theorems for a branching random walk with a random environment in time. Acta Math Sci, 2014, 34B (2): 501- 512 |
6 |
Chen X , He H . On large deviation probabilities for empirical distribution of supercritical branching random walks with unbounded displacements. Probab Theory Relat Fields, 2019, 175: 255- 307
doi: 10.1007/s00440-018-0891-4 |
7 |
Biggins J D . The central limit theorem for the supercritical branching random walk, and related results. Stochastic Process Appl, 1990, 34 (2): 255- 274
doi: 10.1016/0304-4149(90)90018-N |
8 |
Huang C , Liang X , Liu Q . Branching random walks with random environments in time. Frontiers of Mathematics in China, 2014, 9 (4): 835- 842
doi: 10.1007/s11464-014-0407-1 |
9 |
Jagers P . Galton-Watson processes in varying environments. J Appl Probab, 1974, 11: 174- 178
doi: 10.2307/3212594 |
10 |
Joffe A , Moncayo A R . Random variables, trees, and branching random walks. Adv Math, 1973, 10: 401- 416
doi: 10.1016/0001-8708(73)90123-0 |
11 | Kabluchko Z . Distribution of levels in high-dimensional random landscapes. Ann Appl Probab, 2012, 22 (1): 337- 362 |
12 |
Kaplan N , Asmussen S . Branching random walks. Ⅱ. Stoch Process Appl, 1976, 4 (1): 15- 31
doi: 10.1016/0304-4149(76)90023-5 |
13 | Louidor O , Perkins W . Large deviations for the empirical distribution in the branching random walk. Electron J Probab, 2015, 20 (18): 1- 19 |
14 |
Stam A J . On a conjecture by Harris. Z Wahrsch verw Geb, 1966, 5: 202- 206
doi: 10.1007/BF00533055 |
15 | Uchiyama K . Spatial growth of a branching process of particles living in R.d. Ann Probab, 1982, 10 (4): 896- 918 |
16 | Grübel R , Kabluchko Z . Edgeworth expansions for profiles of lattice branching random walks. Ann Inst H Poincaré Probab Statist, 2017, 53 (4): 2103- 2134 |
17 | Chen X . Exact convergence rates for the distribution of particles in branching random walks. Ann Appl Probab, 2001, 11 (4): 1242- 1262 |
18 |
Gao Z Q . Exact convergence rate of the local limit theorem for branching random walks on the integer lattice. Stoch Process Appl, 2017, 127 (4): 1282- 1296
doi: 10.1016/j.spa.2016.07.015 |
19 |
Gao Z Q . A second order asymptotic expansion in the local limit theorem for a simple branching random walk in Zd. Stoch Process Appl, 2018, 128 (12): 4000- 4017
doi: 10.1016/j.spa.2018.01.005 |
20 |
Gao Z Q , Liu Q . Exact convergence rate in the central limit theorem for a branching random walk with a random environment in time. Stoch Process Appl, 2016, 126 (9): 2634- 2664
doi: 10.1016/j.spa.2016.02.013 |
21 | Gao Z Q , Liu Q . Second and third orders asymptotic expansions for the distribution of particles in a branching random walk with a random environment in time. Bernoulli, 2018, 24 (1): 772- 800 |
22 | Liu Q . Branching random walks in random environment. Proceedings of the 4th International Congress of Chinese Mathematicians (ICCM 2007), 2007, 2: 702- 719 |
23 |
Wang X , Huang C . Convergence of martingale and moderate deviations for a branching random walk with a random environment in time. J Theoret Probab, 2017, 30 (3): 961- 995
doi: 10.1007/s10959-016-0668-6 |
24 | Wang X , Huang C . Convergence of complex martingale for a branching random walk in a time random environment. Electron Commun Probab, 2019, 24 (41): 1- 14 |
25 | Wang Y , Liu Z , Liu Q , Li Y . Asymptotic properties of a branching random walk with a random environment in time. Acta Math Sci, 2019, 39B (5): 1345- 1362 |
26 | Baillon J B , Clément Ph , Greven A , den Hollander F . A variational approach to branching random walk in random environment. Ann Probab, 1993, 21 (1): 290- 317 |
27 | Birkner M, Geiger J, Kersting G. Branching Processes in Random Environment-A View on Critical and Subcritical Cases//Deuschel J, Greven A. Interacting Stochastic Systems. Berlin: Springer, 2005: 269-291 |
28 | Comets F , Popov S . On multidimensional branching random walks in random environment. Ann Probab, 2007, 35 (1): 68- 114 |
29 | Comets F , Popov S . Shape and local growth for multidimensional branching random walks in random environment. ALEA Lat Am J Probab Math Stat, 2007, 3: 273- 299 |
30 |
Comets F , Yoshida N . Branching random walks in space-time random environment: survival probability, global and local growth rates. J Theoret Probab, 2011, 24 (3): 657- 687
doi: 10.1007/s10959-009-0267-x |
31 |
Greven A , den Hollander F . Branching random walk in random environment: phase transitions for local and global growth rates. Probab Theory Related Fields, 1992, 91 (2): 195- 249
doi: 10.1007/BF01291424 |
32 |
Hu Y , Yoshida N . Localization for branching random walks in random environment. Stochastic Process Appl, 2009, 119 (5): 1632- 1651
doi: 10.1016/j.spa.2008.08.005 |
33 | Nakashima M . Almost sure central limit theorem for branching random walks in random environment. Ann Appl Probab, 2011, 21 (1): 351- 373 |
34 | Yoshida N . Central limit theorem for branching random walks in random environment. Ann Appl Probab, 2008, 18 (4): 1619- 1635 |
35 |
Biggins J D , Kyprianou A E . Measure change in multitype branching. Adv Appl Probab, 2004, 36 (2): 544- 581
doi: 10.1017/S0001867800013604 |
36 |
Athreya K B , Karlin S . On branching processes with random environments. Ⅰ. Extinction probabilities. Ann Math Statist, 1971, 42: 1499- 1520
doi: 10.1214/aoms/1177693150 |
37 |
Athreya K B , Karlin S . On branching processes with random environments. Ⅱ. Limit theorems. Ann Math Statist, 1971, 42: 1843- 1858
doi: 10.1214/aoms/1177693051 |
38 | Smith W L, Wilkinson W E. On branching processes in random environments. Ann Math Statist, 1969, series 40: 814-827 |
39 |
Tanny D . A necessary and sufficient condition for a branching process in a random environment to grow like the product of its means. Stochastic Process Appl, 1988, 28 (1): 123- 139
doi: 10.1016/0304-4149(88)90070-1 |
40 | Huang C , Liu Q . Convergence rates for a branching process in a random environment. Markov Process and Related Fields, 2014, 20 (2): 265- 286 |
41 | Asmussen S . Convergence rates for branching processes. Ann Probab, 1976, 4 (1): 139- 146 |
42 | Petrov V V . Limit Theorems of Probability Theory. Oxford: Clarendon Press, 1995 |
43 | Durrett R . Probability: Theory and Examples. Belmont: Duxbury Press, 1996 |
44 | Lawler G F , Limic V . Random Walk: A Modern Introduction. Cambridge: Cambridge University Press, 2010 |
45 |
Liang X , Liu Q . Weighted moments of the limit of a branching process in a random environment. Proceedings of the Steklov Institute of Mathematics, 2013, 282 (1): 127- 145
doi: 10.1134/S0081543813060126 |
46 |
Biggins J D . Growth rates in the branching random walk. Z Wahrsch verw Geb, 1979, 48 (1): 17- 34
doi: 10.1007/BF00534879 |
[1] | 鲁世平, 任景莉, 葛渭高. 一类奇摄动泛函微分方程边值问题[J]. 数学物理学报, 2001, 21(zk): 591-597. |
[2] | 莫嘉琪. 奇摄动高阶非线性椭圆型方程非局部边值问题[J]. 数学物理学报, 1999, 19(3): 301-306. |
[3] | 林苏榕. 极限方程有奇性的一类六阶椭圆型方程混合边值问题解的渐近式[J]. 数学物理学报, 1998, 18(S1): 149-156. |
[4] | 张祥, 叶勤. 奇摄动向量椭圆型积分微分方程边值问题[J]. 数学物理学报, 1995, 15(3): 269-274. |
[5] | 林宗池. 极限方程有奇性的一类四阶椭圆型方程混合边值问题解的渐近式[J]. 数学物理学报, 1995, 15(2): 190-197. |
|