数学物理学报 ›› 2022, Vol. 42 ›› Issue (1): 282-305.

• 论文 • 上一篇    下一篇

依时变化的随机环境中的分枝随机游动的局部极限定理的二阶展开

高志强()   

  1. 北京师范大学数学科学学院 & 教育部数学与复杂系统实验室 北京 100875
  • 收稿日期:2019-12-25 出版日期:2022-02-26 发布日期:2022-02-23
  • 作者简介:高志强, E-mail: gaozq@bnu.edu.cn
  • 基金资助:
    国家自然科学基金(11971063)

A Second Order Correction of the Local Limit Theorem for a Branching Random Walk with a Random Environment in Time on Zd

Zhiqiang Gao()   

  1. Laboratory of Mathematics and Complex Systems(Ministry of Education) & School of Mathematical Sciences, Beijing Normal University, Beijing 100875
  • Received:2019-12-25 Online:2022-02-26 Published:2022-02-23
  • Supported by:
    the NSFC(11971063)

摘要:

考虑了Zd中随机环境中的分枝随机游动, 其中分枝机制和粒子迁移的分布律均依时间变化.对任意给定点zZd, 令Zn(z)表示位于该点处的n代粒子的个数.给出了Zn(z)的二阶渐近展开表达式.

关键词: 分枝随机游动, 局部极限定理, 渐近展开

Abstract:

Consider a branching random walk on Zd with a random environment in time, where the branching offspring distribution and the migration law change as times goes by. Under the mild moment conditions, we derive the second order expansion for Zn(z), which counts the number of particles of generation n at zZd.

Key words: Branching random walk, Local limit theorem, Asymptotic expansions

中图分类号: 

  • O211.6