1 |
Asmussen S, Hering H. Branching Processes. Boston: Birkhäuser Boston, 1983
|
2 |
Révész P . Random Walks of Infinitely Many Particles. River Edge: World Scientific Publishing Co, 1994
|
3 |
Harris T E . The Theory of Branching Processes. Berlin: Springer-Verlag, 1963
|
4 |
Asmussen S , Kaplan N . Branching random walks. Ⅰ. Stochastic Process Appl, 1976, 4 (1): 1- 13
doi: 10.1016/0304-4149(76)90022-3
|
5 |
Gao Z Q , Liu Q , Wang H . Central limit theorems for a branching random walk with a random environment in time. Acta Math Sci, 2014, 34B (2): 501- 512
|
6 |
Chen X , He H . On large deviation probabilities for empirical distribution of supercritical branching random walks with unbounded displacements. Probab Theory Relat Fields, 2019, 175: 255- 307
doi: 10.1007/s00440-018-0891-4
|
7 |
Biggins J D . The central limit theorem for the supercritical branching random walk, and related results. Stochastic Process Appl, 1990, 34 (2): 255- 274
doi: 10.1016/0304-4149(90)90018-N
|
8 |
Huang C , Liang X , Liu Q . Branching random walks with random environments in time. Frontiers of Mathematics in China, 2014, 9 (4): 835- 842
doi: 10.1007/s11464-014-0407-1
|
9 |
Jagers P . Galton-Watson processes in varying environments. J Appl Probab, 1974, 11: 174- 178
doi: 10.2307/3212594
|
10 |
Joffe A , Moncayo A R . Random variables, trees, and branching random walks. Adv Math, 1973, 10: 401- 416
doi: 10.1016/0001-8708(73)90123-0
|
11 |
Kabluchko Z . Distribution of levels in high-dimensional random landscapes. Ann Appl Probab, 2012, 22 (1): 337- 362
|
12 |
Kaplan N , Asmussen S . Branching random walks. Ⅱ. Stoch Process Appl, 1976, 4 (1): 15- 31
doi: 10.1016/0304-4149(76)90023-5
|
13 |
Louidor O , Perkins W . Large deviations for the empirical distribution in the branching random walk. Electron J Probab, 2015, 20 (18): 1- 19
|
14 |
Stam A J . On a conjecture by Harris. Z Wahrsch verw Geb, 1966, 5: 202- 206
doi: 10.1007/BF00533055
|
15 |
Uchiyama K . Spatial growth of a branching process of particles living in $\mathbb{R}.d$. Ann Probab, 1982, 10 (4): 896- 918
|
16 |
Grübel R , Kabluchko Z . Edgeworth expansions for profiles of lattice branching random walks. Ann Inst H Poincaré Probab Statist, 2017, 53 (4): 2103- 2134
|
17 |
Chen X . Exact convergence rates for the distribution of particles in branching random walks. Ann Appl Probab, 2001, 11 (4): 1242- 1262
|
18 |
Gao Z Q . Exact convergence rate of the local limit theorem for branching random walks on the integer lattice. Stoch Process Appl, 2017, 127 (4): 1282- 1296
doi: 10.1016/j.spa.2016.07.015
|
19 |
Gao Z Q . A second order asymptotic expansion in the local limit theorem for a simple branching random walk in $\mathbb{Z}^{d}$. Stoch Process Appl, 2018, 128 (12): 4000- 4017
doi: 10.1016/j.spa.2018.01.005
|
20 |
Gao Z Q , Liu Q . Exact convergence rate in the central limit theorem for a branching random walk with a random environment in time. Stoch Process Appl, 2016, 126 (9): 2634- 2664
doi: 10.1016/j.spa.2016.02.013
|
21 |
Gao Z Q , Liu Q . Second and third orders asymptotic expansions for the distribution of particles in a branching random walk with a random environment in time. Bernoulli, 2018, 24 (1): 772- 800
|
22 |
Liu Q . Branching random walks in random environment. Proceedings of the 4th International Congress of Chinese Mathematicians (ICCM 2007), 2007, 2: 702- 719
|
23 |
Wang X , Huang C . Convergence of martingale and moderate deviations for a branching random walk with a random environment in time. J Theoret Probab, 2017, 30 (3): 961- 995
doi: 10.1007/s10959-016-0668-6
|
24 |
Wang X , Huang C . Convergence of complex martingale for a branching random walk in a time random environment. Electron Commun Probab, 2019, 24 (41): 1- 14
|
25 |
Wang Y , Liu Z , Liu Q , Li Y . Asymptotic properties of a branching random walk with a random environment in time. Acta Math Sci, 2019, 39B (5): 1345- 1362
|
26 |
Baillon J B , Clément Ph , Greven A , den Hollander F . A variational approach to branching random walk in random environment. Ann Probab, 1993, 21 (1): 290- 317
|
27 |
Birkner M, Geiger J, Kersting G. Branching Processes in Random Environment-A View on Critical and Subcritical Cases//Deuschel J, Greven A. Interacting Stochastic Systems. Berlin: Springer, 2005: 269-291
|
28 |
Comets F , Popov S . On multidimensional branching random walks in random environment. Ann Probab, 2007, 35 (1): 68- 114
|
29 |
Comets F , Popov S . Shape and local growth for multidimensional branching random walks in random environment. ALEA Lat Am J Probab Math Stat, 2007, 3: 273- 299
|
30 |
Comets F , Yoshida N . Branching random walks in space-time random environment: survival probability, global and local growth rates. J Theoret Probab, 2011, 24 (3): 657- 687
doi: 10.1007/s10959-009-0267-x
|
31 |
Greven A , den Hollander F . Branching random walk in random environment: phase transitions for local and global growth rates. Probab Theory Related Fields, 1992, 91 (2): 195- 249
doi: 10.1007/BF01291424
|
32 |
Hu Y , Yoshida N . Localization for branching random walks in random environment. Stochastic Process Appl, 2009, 119 (5): 1632- 1651
doi: 10.1016/j.spa.2008.08.005
|
33 |
Nakashima M . Almost sure central limit theorem for branching random walks in random environment. Ann Appl Probab, 2011, 21 (1): 351- 373
|
34 |
Yoshida N . Central limit theorem for branching random walks in random environment. Ann Appl Probab, 2008, 18 (4): 1619- 1635
|
35 |
Biggins J D , Kyprianou A E . Measure change in multitype branching. Adv Appl Probab, 2004, 36 (2): 544- 581
doi: 10.1017/S0001867800013604
|
36 |
Athreya K B , Karlin S . On branching processes with random environments. Ⅰ. Extinction probabilities. Ann Math Statist, 1971, 42: 1499- 1520
doi: 10.1214/aoms/1177693150
|
37 |
Athreya K B , Karlin S . On branching processes with random environments. Ⅱ. Limit theorems. Ann Math Statist, 1971, 42: 1843- 1858
doi: 10.1214/aoms/1177693051
|
38 |
Smith W L, Wilkinson W E. On branching processes in random environments. Ann Math Statist, 1969, series 40: 814-827
|
39 |
Tanny D . A necessary and sufficient condition for a branching process in a random environment to grow like the product of its means. Stochastic Process Appl, 1988, 28 (1): 123- 139
doi: 10.1016/0304-4149(88)90070-1
|
40 |
Huang C , Liu Q . Convergence rates for a branching process in a random environment. Markov Process and Related Fields, 2014, 20 (2): 265- 286
|
41 |
Asmussen S . Convergence rates for branching processes. Ann Probab, 1976, 4 (1): 139- 146
|
42 |
Petrov V V . Limit Theorems of Probability Theory. Oxford: Clarendon Press, 1995
|
43 |
Durrett R . Probability: Theory and Examples. Belmont: Duxbury Press, 1996
|
44 |
Lawler G F , Limic V . Random Walk: A Modern Introduction. Cambridge: Cambridge University Press, 2010
|
45 |
Liang X , Liu Q . Weighted moments of the limit of a branching process in a random environment. Proceedings of the Steklov Institute of Mathematics, 2013, 282 (1): 127- 145
doi: 10.1134/S0081543813060126
|
46 |
Biggins J D . Growth rates in the branching random walk. Z Wahrsch verw Geb, 1979, 48 (1): 17- 34
doi: 10.1007/BF00534879
|