数学物理学报 ›› 2021, Vol. 41 ›› Issue (6): 1718-1733.

• 论文 • 上一篇    下一篇

一类刻画微机电模型四阶抛物型方程解的适定性

赖柏顺(),罗勍*()   

  1. 湖南师范大学数学与统计学院 长沙 410081
  • 收稿日期:2020-09-18 出版日期:2021-12-26 发布日期:2021-12-02
  • 通讯作者: 罗勍 E-mail:laibaishun@hunnu.edu.cn;10100095@vip.henu.edu.cn
  • 作者简介:赖柏顺, E-mail: laibaishun@hunnu.edu.cn
  • 基金资助:
    国家自然科学基金(11971148)

Well-Posedness of a Fourth Order Parabolic Equation Modeling MEMS

Baishun Lai(),Qing Luo*()   

  1. School of Mathematics and Statistics, Hunan Normal University, Changsha 410081
  • Received:2020-09-18 Online:2021-12-26 Published:2021-12-02
  • Contact: Qing Luo E-mail:laibaishun@hunnu.edu.cn;10100095@vip.henu.edu.cn
  • Supported by:
    the NSFC(11971148)

摘要:

该文考虑了有界区域上一类带奇异非线性项$(1-u)^{-2}$的四阶演化方程解的适定性.该模型具有很强的物理背景,它刻画了微机电模型的工作原理.首先,该文研究了四阶抛物方程解的适定性,该方程的适定性在文章[1]中通过半群理论得到验证,但是他们只限于区域空间维数为2维的情形.通过Faedo-Galerkin技巧,可以证明该方程在空间维数小于等于7的情形下解是适定的.

关键词: 微机电模型, 四阶演化方程, 适定性

Abstract:

In this paper, we consider a fourth order evolution equation involving a singular nonlinear term $\frac{\lambda}{(1-u)^{2}}$ in a bounded domain $\Omega \subset \mathbb{R}^{n}$. This equation arises in the modeling of microelectromechanical systems. We first investigate the well-posedness of a fourth order parabolic equation which has been studied in [1], where the authors, by the semigroup argument, obtained the well-posedness of this equation for $n\leq2$. Instead of semigroup method, we use the Faedo-Galerkin technique to construct a unique solution of the fourth order parabolic equation for $n\leq7$, which completes the result of [1].

Key words: Electrostatic MEMS, Fourth order evolution equation, Well-posedness

中图分类号: 

  • O175