数学物理学报 ›› 2021, Vol. 41 ›› Issue (5): 1445-1464.

• 论文 • 上一篇    下一篇

一维非等熵可压缩微极流体的低马赫数极限

刘欣1,*(),董小磊2()   

  1. 1 上海对外经贸大学统计与信息学院 上海 201620
    2 东华大学信息科学与技术学院 上海 201620
  • 收稿日期:2019-07-24 出版日期:2021-10-26 发布日期:2021-10-08
  • 通讯作者: 刘欣 E-mail:xinliu120@suibe.edu.cn;xld0908@163.com
  • 作者简介:董小磊, E-mail: xld0908@163.com
  • 基金资助:
    国家自然科学基金(11801357)

Low Mach Number Limit to One-Dimensional Non-Isentropic Compressible Viscous Micropolar Fluid Model

Xin Liu1,*(),Xiaolei Dong2()   

  1. 1 School of Statistics and Information, Shanghai University of International Business and Economics, Shanghai 201620
    2 College of Information Sciences and Technology, Donghua University, Shanghai 201620
  • Received:2019-07-24 Online:2021-10-26 Published:2021-10-08
  • Contact: Xin Liu E-mail:xinliu120@suibe.edu.cn;xld0908@163.com
  • Supported by:
    the NSFC(11801357)

摘要:

该文研究了具有一般初值的一维非等熵可压缩粘性微极流体模型,得到了该模型的低马赫数极限.该极限依赖于对加权时间导数的一致估计和一个广义的收敛引理.此外,在这种情况下,±∞处的状态之间的差异可能是任意大的.

关键词: 微极流体模型, 非等熵, 低马赫数极限, 一致估计

Abstract:

In this paper, we consider the one dimensional non-isentropic compressible micropolar fluid model with general initial data, and justify rigorously the low Mach number limit of this system. The limit relies on the uniform estimates including weighted time derivatives and an extended convergence lemma. Moreover, the difference between the states at ±∞ can be arbitrary large in this case.

Key words: Micropolar fluid model, Non-isentropic, Low Mach number limit, Uniform estimates

中图分类号: 

  • O175