数学物理学报 ›› 2021, Vol. 41 ›› Issue (5): 1428-1444.
收稿日期:
2020-01-08
出版日期:
2021-10-26
发布日期:
2021-10-08
通讯作者:
方钟波
E-mail:Lzhiqing1005@163.com;fangzb7777@hotmail.com
作者简介:
刘志卿, E-mail: 基金资助:
Zhiqing Liu1(),Zhongbo Fang2,*()
Received:
2020-01-08
Online:
2021-10-26
Published:
2021-10-08
Contact:
Zhongbo Fang
E-mail:Lzhiqing1005@163.com;fangzb7777@hotmail.com
Supported by:
摘要:
该文考虑一类记忆核不一定递减的线性粘弹性波动方程振动传递问题的渐近行为.通过构造新的Lyapunov泛函,导出问题能量的一般衰减估计值.同时,举例说明主要结论中包括指数、代数及对数等一致衰减估计.
中图分类号:
刘志卿,方钟波. 具有不一定递减核的线性粘弹性波动方程振动传递问题的一般衰减估计[J]. 数学物理学报, 2021, 41(5): 1428-1444.
Zhiqing Liu,Zhongbo Fang. General Decay for the Transmission Problem of Viscoelastic Waves with not Necessarily Decreasing Kernel[J]. Acta mathematica scientia,Series A, 2021, 41(5): 1428-1444.
1 |
Marzocchi A , Mutõz Rivera J E , Grazia Naso M . Asymptotic behaviour and exponential stability for a transmission problem in thermoelasticity. Math Method Appl Sci, 2002, 25 (11): 955- 980
doi: 10.1002/mma.323 |
2 |
Marzocchi A , Grazia Naso M . Transmission problem in thermoelasticity with symmetry. IMA J Appl Math, 2003, 68 (1): 23- 46
doi: 10.1093/imamat/68.1.23 |
3 | Bastos W D , Raposo C A . Transmission problem for waves with frictional damping. Electron J Differ Equa, 2007, 2007 (60): 1- 10 |
4 |
Mutõz Rivera J E , Oquendo H P . The transmission problem of viscoelastic waves. Acta Appl Math, 2000, 62, 1- 21
doi: 10.1023/A:1006449032100 |
5 | Andrade D , Fatori L H , Mutõz Rivera J E . Nonlinear transmission problem with a dissipative boundary condition of memory type. Electron J Differ Eq, 2006, 2006 (53): 1- 16 |
6 |
Alves M S , Raposo C A , Mutõz Rivera J E , Sepulveda M , Villagrán O V . Uniform stabilization for the transmission problem of the Timoshenko system with memory. J Math Anal Appl, 2010, 369 (1): 323- 345
doi: 10.1016/j.jmaa.2010.02.045 |
7 | Li G , Wang D , Zhu B . Well-posedness and decay of solutions for a transmission problem with history and delay. Electron J Differ Equa, 2016, 2016 (23): 1- 21 |
8 | Zitouni S , Ardjouni A , Zennir K , Amiar R . Well-posedness and decay of solution for a transmission problem in the presence of infinite history and varying delay. Nonlinear Studies, 2018, 25 (2): 445- 465 |
9 | Medjden M , Tatar N E . Asymptotic behavior for a viscoelastic problem with not necessarily decreasing kernel. Appl Math Comput, 2005, 167 (2): 1221- 1235 |
10 |
Kafini M , Tatar N E . A decay result to a viscoelastic problem in with an oscillating kernel. J Math Phys, 2010, 51 (7): 073506
doi: 10.1063/1.3458600 |
11 | Djebabla A , Tatar N E . Exponential stabilization of the Timoshenko system by a thermal effect with an oscillating kernel. Math Comput Model, 2011, 54 (1/2): 301- 314 |
12 | Mesloub F , Boulaaras S . General decay for a viscoelastic problem with not necessarily decreasing kernel. J Appl Math Comput, 2018, 58 (1/2): 647- 665 |
13 |
Ouchenane D , Boulaara S , Mesloub F . General decay for a class of viscoelastic problem with not necessarily decreasing kernel. Appl Anal, 2019, 98 (9): 1677- 1693
doi: 10.1080/00036811.2018.1437421 |
[1] | 蔡晓静,周艳杰. 带有阻尼项的Boussinesq方程解的大时间性态[J]. 数学物理学报, 2021, 41(5): 1415-1427. |
[2] | 邹维林,任远春,肖美萍. 系数的L1相互关系对非线性退化椭圆方程解的正则性的影响[J]. 数学物理学报, 2021, 41(5): 1405-1414. |
[3] | 周道国. 三维Navier-Stokes方程在Lorentz空间中的正则性准则[J]. 数学物理学报, 2021, 41(5): 1396-1404. |
[4] | 贾哲,杨作东. 带非线性扩散项和信号产生项的趋化-趋触模型解的整体有界性[J]. 数学物理学报, 2021, 41(5): 1382-1395. |
[5] | 欧阳柏平,肖胜中. 具有非线性记忆项的半线性双波动方程解的全局非存在性[J]. 数学物理学报, 2021, 41(5): 1372-1381. |
[6] | 张丽红,杨泽栋,王国涛,BaleanuDumitru. 一类k-Hessian方程解的存在性和渐近稳定性[J]. 数学物理学报, 2021, 41(5): 1357-1371. |
[7] | 陈鹏. 一类反应扩散方程的Nehari-Pankov型基态解[J]. 数学物理学报, 2021, 41(5): 1347-1356. |
[8] | 合敬然,郭合林,王文清. 一类带强制位势的p-Laplace特征值问题[J]. 数学物理学报, 2021, 41(5): 1323-1332. |
[9] | 张宗宁,李春光,董建强. 变系数广义KdV-Burgers方程的格子Boltzmann模型[J]. 数学物理学报, 2021, 41(5): 1283-1295. |
[10] | 贾嘉. 二维定常Chaplygin气体绕直楔流动[J]. 数学物理学报, 2021, 41(5): 1270-1282. |
[11] | 龙斌, 徐珊珊, 曹慧, 李建全. 周期扰动下分离指标对异宿轨道分支的影响[J]. 数学物理学报, 2021, 41(5): 1516-1528. |
[12] | 付敏, 郝嘉骏, 解烈军, 王金平. 压缩感知OMP算法下信号重建方法研究[J]. 数学物理学报, 2021, 41(5): 1555-1565. |
[13] | 刘欣, 董小磊. 一维非等熵可压缩微极流体的低马赫数极限[J]. 数学物理学报, 2021, 41(5): 1445-1464. |
[14] | 王培光, 杨凯愉. 具有初边值条件的集值脉冲微分方程的平均法[J]. 数学物理学报, 2021, 41(5): 1504-1515. |
[15] | 覃桂茳, 杨甲山. 具拟线性中立项的二阶变时滞动力方程的振动定理[J]. 数学物理学报, 2021, 41(5): 1492-1503. |
|