数学物理学报 ›› 2021, Vol. 41 ›› Issue (4): 1053-1065.

• 论文 • 上一篇    下一篇

一类连续和不连续分段线性系统的周期解研究

杨静1,柯昌成1,魏周超1,2,*()   

  1. 1 中国地质大学(武汉)数学与物理学院武汉 430074
    2 中国地质大学(武汉)浙江研究院 杭州 311305
  • 收稿日期:2019-09-14 出版日期:2021-08-26 发布日期:2021-08-09
  • 通讯作者: 魏周超 E-mail:weizhouchao@163.com
  • 基金资助:
    国家自然科学基金(11772306);浙江省自然科学基金(LY20A020001)

Study on Periodic Solutions of a Class of Continuous and Discontinuous Piece-Wise Linear Systems

Jing Yang1,Changcheng Ke1,Zhouchao Wei1,2,*()   

  1. 1 School of Mathematics and Physics, China University of Geosciences(Wuhan), Wuhan 430074
    2 Zhejiang Research Institute, China University of Geosciences(Wuhan), Hangzhou 311305
  • Received:2019-09-14 Online:2021-08-26 Published:2021-08-09
  • Contact: Zhouchao Wei E-mail:weizhouchao@163.com
  • Supported by:
    the NSFC(11772306);the NSF of Zhejiang Province(LY20A020001)

摘要:

近年来,非光滑系统的研究成为一个热点,其有关分段线性系统的定性分析成了必不可少的研究问题.该文研究了一个变换后的Michelson微分系统,利用平均法理论证明了变换后的连续和不连续分段线性系统的周期解的存在性.

关键词: 连续分段线性微分系统, 不连续分段线性微分系统, 周期解, 平均法理论

Abstract:

In recent years, the study of non-smooth systems has become a hot spot, and the qualitative analysis of piece-wise linear systems has become an indispensable research problem. In this paper, a transformed Michelson differential system is studied, and the existence of periodic solutions for continuous and discontinuous piece-wise linear systems is proved by means of average theory.

Key words: Continuous piece-wise linear differential system, Discontinuous piece-wise linear differential system, Periodic solution, Average theory

中图分类号: 

  • O175