数学物理学报 ›› 2021, Vol. 41 ›› Issue (3): 686-701.

• 论文 • 上一篇    下一篇

具有不确定奇性的Liénard方程周期正解的存在性

鲁世平*(),周诗乐(),余星辰()   

  1. 南京信息工程大学数学与统计学院 南京 210044
  • 收稿日期:2020-05-06 出版日期:2021-06-01 发布日期:2021-06-09
  • 通讯作者: 鲁世平 E-mail:lushiping88@sohu.com;zhoushile96@163.com;yuxingchen0@yeah.net
  • 作者简介:周诗乐, E-mail: zhoushile96@163.com|余星辰, E-mail: yuxingchen0@yeah.net
  • 基金资助:
    国家留学基金(201908320531);江苏省研究生科研创新项目(SJKY19_0957)

Periodic Solutions for a Singular Liénard Equation with Sign-Changing Weight Functions

Shiping Lu*(),Shile Zhou(),Xingchen Yu()   

  1. School of Math & Statistics, Nanjing University of Information Science and Technology, Nanjing 210044
  • Received:2020-05-06 Online:2021-06-01 Published:2021-06-09
  • Contact: Shiping Lu E-mail:lushiping88@sohu.com;zhoushile96@163.com;yuxingchen0@yeah.net
  • Supported by:
    the China Scholarship Council Project(201908320531);the Project of Innovation in Scientific Research for Graduate Students of Jiangsu Province(SJKY19_0957)

摘要:

该文讨论了下述具有奇性的Liénard方程 周期正解的存在性,其中$f: (0,+\infty)\rightarrow\mathbb{R}$为连续函数,且允许其在原点处具有奇性,函数$\alpha,\varphi\in L([0,T],\mathbb{R})$都是$T$-周期的,$\mu\in(0,+\infty)$,$\delta\in(0,1]$为常数.函数$\alpha(t),\varphi(t)$在$[0,T]$上可变号.利用重合度拓展定理证明了上述方程至少存在一个$T$-周期正解.

关键词: 周期解, 奇性, 拓展定理, 重合度理论

Abstract:

In this paper, we study the existence of positive periodic solutions for a singular Liénard equation where $f: (0, +\infty)\rightarrow \mathbb{R} $ is continuous which may have a singularity at $x=0$, $\alpha$ and $\varphi$ are $T$ -periodic functions with $\alpha, \varphi\in L([0, T], \mathbb{R})$, $\mu\in(0, +\infty)$ and $\delta\in(0, 1]$ are constants. The signs of weight functions $\alpha(t)$ and $\varphi(t)$ are allowed to change on $[0, T]$. We prove that the given equation has at least one positive $T$ -periodic solution. The method of proof relies on a continuation theorem of coincidence degree principle.

Key words: Periodic solution, Singularity, Continuation theorem, Coincidence degree principle

中图分类号: 

  • O175.2