数学物理学报 ›› 2021, Vol. 41 ›› Issue (3): 583-594.

• 论文 • 上一篇    下一篇

广义带参Bernstein-Bézier算子的逼近性质

齐秋兰*(),郭丹丹   

  1. 河北师范大学数学科学学院 & 河北省计算数学与应用重点实验室 石家庄 050024
  • 收稿日期:2020-04-17 出版日期:2021-06-26 发布日期:2021-06-09
  • 通讯作者: 齐秋兰 E-mail:qiqiulan@163.com
  • 基金资助:
    国家自然科学基金(11871191);河北省教育厅基金(ZD2019053);河北师范大学基金(L2020Z03)

Approximation Properties of a New Bernstein-Bézier Operators with Parameters

Qiulan Qi*(),Dandan Guo   

  1. School of Mathematical Sciences, Hebei Normal University & Hebei Key Laboratory of Computational Mathematics and Applications, Shijiazhuang 050024
  • Received:2020-04-17 Online:2021-06-26 Published:2021-06-09
  • Contact: Qiulan Qi E-mail:qiqiulan@163.com
  • Supported by:
    the NSFC(11871191);the Scientific Research Fund of Hebei Provincial Education Department(ZD2019053);the NSF of Hebei Normal University(L2020Z03)

摘要:

该文首先介绍了一种新的含参量Bernstein-Bézier型算子;然后,研究了该类算子矩的估计,给出了用连续模表示的收敛速度;最后,得到了这些算子逼近的等价定理.

关键词: Bernstein-Bézier型算子, 收敛定理, 连续模, Cauchy-Schwarz不等式

Abstract:

In this paper, a new generalized Bernstein-Bézier type operators is constructed. The estimates of the moments of these operators are investigated. The rate of convergence in terms of modulus of continuity is given. Then, the equivalent theorem of these operators is studied.

Key words: Bernstein-Bézier type operators, Convergence theorem, Modulus of continuity, Cauchy-Schwarz inequality

中图分类号: 

  • O175.41