数学物理学报 ›› 2021, Vol. 41 ›› Issue (3): 577-582.

• 论文 •    下一篇

基于一类特殊特征值集的扩散算子逆谱问题

曹庆,徐小川*()   

  1. 南京信息工程大学数学与统计学院 南京 210044
  • 收稿日期:2020-05-26 出版日期:2021-06-26 发布日期:2021-06-09
  • 通讯作者: 徐小川 E-mail:xcxu@nuist.edu.cn
  • 基金资助:
    国家自然科学基金(11901304);南京信息工程大学人才启动基金

Inverse Spectral Problem for the Diffusion Operator from a Particular Set of Eigenvalues

Qing Cao,Xiaochuan Xu*()   

  1. School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044
  • Received:2020-05-26 Online:2021-06-26 Published:2021-06-09
  • Contact: Xiaochuan Xu E-mail:xcxu@nuist.edu.cn
  • Supported by:
    the NSFC(11901304);the Startup Foundation for Introducing Talent of NUIST

摘要:

该文研究有限区间上带有Robin-Dirichlet边界条件的扩散算子逆谱问题,证明一类特殊的特征值集合可以唯一确定扩散算子,并给出重构算法.

关键词: 扩散算子, 逆谱问题, 唯一性定理, 重构算法

Abstract:

In this paper, we study the inverse spectral problem for the diffusion operator on a finite interval with the Robin-Dirichlet boundary conditions, and prove that a particular set of eigenvalues can uniquely determine the diffusion operator, and give the reconstruction algorithm.

Key words: Diffusion operator, Inverse spectral problem, Uniqueness theorem, Reconstruction algorithm

中图分类号: 

  • O173