数学物理学报 ›› 2021, Vol. 41 ›› Issue (2): 562-576.
• 论文 • 上一篇
收稿日期:
2020-02-14
出版日期:
2021-04-26
发布日期:
2021-04-29
通讯作者:
高飞
E-mail:lingleah@whut.edu.cn;gaof@whut.edu.cn
作者简介:
李喜玲, E-mail: 基金资助:
Xiling Li(),Fei Gao*(),Wenqin Li
Received:
2020-02-14
Online:
2021-04-26
Published:
2021-04-29
Contact:
Fei Gao
E-mail:lingleah@whut.edu.cn;gaof@whut.edu.cn
Supported by:
摘要:
基于相关的病理知识,研究了具有免疫时滞和非线性发生率的分数阶HBV感染模型的稳定性问题.讨论了系统解的存在唯一性、正性和有界性.此外,利用泛函微分方程和Caputo分数阶导数的稳定性理论,通过分析模型在平衡点处超越特征方程根的分布情况,讨论了时滞对平衡点稳定性的影响.研究结果表明:时滞不影响无病平衡点的稳定性,但会诱发地方病平衡点的稳定性,并且在其附近产生小振幅的周期解.通过构造合适的Lyapunov函数,分析了无病平衡点的全局渐进稳定性.最后,利用分数阶时滞稳定性原理,设计相应线性控制器,对分数阶HBV感染模型进行有效控制.
中图分类号:
李喜玲,高飞,李文琴. 具有免疫时滞的分数阶HBV感染模型稳定性分析[J]. 数学物理学报, 2021, 41(2): 562-576.
Xiling Li,Fei Gao,Wenqin Li. Stability Analysis of Fractional-Order Hepatitis B Virus Infection Model With Immune Delay[J]. Acta mathematica scientia,Series A, 2021, 41(2): 562-576.
1 | Marion P L, Robinson W S. Hepadna Viruses: Hepatitis B and Related Viruses//Cooper M, et al. Curr Topic Microbiol Immu, 1983, 105: 99-121 |
2 | Lavanchy D . Worldwide epidemiology of HBV infection, disease burden, and vaccine prevention. J Clin Virol, 2005, 34 (Suppl 1): S1- S3 |
3 |
Nowak M A , Bonhoeffer S , Hill A M , et al. Viral dynamics in hepatitis B virus infection. Proc Natl Acad Sci, 1996, 93 (9): 4398- 4402
doi: 10.1073/pnas.93.9.4398 |
4 |
Nowak M A , Bangham C R M . Population dynamics of immune responses to persistent viruses. Science, 1996, 272 (5258): 74- 79
doi: 10.1126/science.272.5258.74 |
5 | Min L Q , Su Y M , Kuang Y . Mathematical analysis of a basic virus infection model with application to HBV infection. Rocky MT J Math, 2008, 38 (5): 1573- 1585 |
6 |
Gourley S A , Kuang Y , Nagy J D . Dynamics of a delay differential equation model of hepatitis B virus infection. J Biol Dynam, 2008, 2 (2): 140- 153
doi: 10.1080/17513750701769873 |
7 |
马庆波, 向华. 具有时滞的HBV病毒动力学模型稳定性分析. 生物信息学, 2009, 7 (4): 326- 329
doi: 10.3969/j.issn.1672-5565.2009.04.022 |
Ma Q B , Xiang H . Stability analysis of HBV virus dynamics model with delay. Bioinformatics, 2009, 7 (4): 326- 329
doi: 10.3969/j.issn.1672-5565.2009.04.022 |
|
8 |
Wang K F , Fan A J , Torres A . Global properties of an improved hepatitis B virus model. Nonlinear Anal-Real, 2010, 11 (4): 3131- 3138
doi: 10.1016/j.nonrwa.2009.11.008 |
9 |
Xie Q Z , Huang D W , Zhang S D , et al. Analysis of a viral infection model with delayed immune response. Appl Math Model, 2010, 34 (9): 2388- 2395
doi: 10.1016/j.apm.2009.11.005 |
10 | Vargas-De-Leon C . Stability analysis of a model for HBV infection with cure of infected cells and intracellular delay. Appl Math Comput, 2012, 219 (1): 389- 398 |
11 |
Wang Y , Liu X N . Dynamical behaviors of a delayed HBV infection model with logistic hepatocyte growth, cure rate and CTL immune response. Japan J Ind Appl Math, 2015, 32 (3): 575- 593
doi: 10.1007/s13160-015-0184-6 |
12 |
靖晓洁, 赵爱民, 刘桂荣. 考虑部分免疫和环境传播的麻疹传染病模型的全局稳定性. 数学物理学报, 2019, 39A (1): 909- 917
doi: 10.3969/j.issn.1003-3998.2019.04.018 |
Jing X J , Zhao A M , Liu G R . Global stability of a measles epidemic model with partial immunity and environmental transmission. Acta Math Sci, 2019, 39A (4): 909- 917
doi: 10.3969/j.issn.1003-3998.2019.04.018 |
|
13 |
Dokoumetzidis A , Macheras P . Fractional kinetics in drug absorption and disposition processes. Journal of Pharmacokinetics and Pharmacodynamics, 2009, 36 (2): 165- 178
doi: 10.1007/s10928-009-9116-x |
14 |
Srivastava H M , Saad K M , Khader M M . An efficient spectral collocation method for the dynamic simulation of the fractional epidemiological model of the ebola virus. Chaos Soliton Fract, 2020, 140, 110174
doi: 10.1016/j.chaos.2020.110174 |
15 |
朱波, 刘立山. 带瞬时脉冲的分数阶非自制发展方程解的存在唯一性. 数学物理学报, 2019, 39A (1): 105- 113
doi: 10.3969/j.issn.1003-3998.2019.01.010 |
Zhu B , Liu L S . Existence and uniqueness of the mild solutions for a class of fractional non-autonomous evolution equations with impulses. Acta Math Sci, 2019, 39A (1): 105- 113
doi: 10.3969/j.issn.1003-3998.2019.01.010 |
|
16 |
Stanislavsky A A . Memory effects and macroscopic manifestation of randomness. Phys Rev E, 2000, 61 (5): 4752- 4759
doi: 10.1103/PhysRevE.61.4752 |
17 |
Vargas-De-Leon C . Volterra-type Lyapunov functions for fractional-order epidemic systems. Commun Nonlinear Sci Numer Simul, 2015, 24, 75- 85
doi: 10.1016/j.cnsns.2014.12.013 |
18 |
Salman S M , Yousef A M . On a fractional-order model for HBV infection with cure of infected cells. Journal of the Egyptian Mathematical Society, 2017, 25 (4): 445- 451
doi: 10.1016/j.joems.2017.06.003 |
19 |
Ullah S , Khan M A , Farooq M . A new fractional model for the dynamics of the hepatitis B virus using the Caputo-Fabrizio derivative. Eur Phys J Plus, 2018, 133 (6): 237
doi: 10.1140/epjp/i2018-12072-4 |
20 |
Ullah S , Khan M A , Farooq M . Modeling and analysis of the fractional HBV model with Atangana-Baleanu derivative. Eur Phys J Plus, 2018, 133 (8): 313
doi: 10.1140/epjp/i2018-12120-1 |
21 | 高飞, 胡道楠, 童恒庆, 等. 分数阶Willis环脑迟发性动脉瘤时滞系统混沌分析. 物理学报, 2018, 67 (15): 303- 313 |
Gao F , Hu D N , Tong H Q , et al. Chaotic analysis of fractional Willis delayed aneurysm system. Acta Phys Sin, 2018, 67 (15): 303- 313 | |
22 |
Wang X H , Wang Z , Huang X , et al. Dynamic analysis of a delayed fractional-order SIR model with saturated incidence and treatment functions. Int J Bifurcat Chaos, 2018, 28 (14): 1850180
doi: 10.1142/S0218127418501808 |
23 | Podlubny I . Fractional Differential Equations. New York: Academic Press, 1999 |
24 | Diethelm K . The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo type. New York: Springer, 2010 |
25 | Huo R , Wang X L , Wu G R . Large existence and uniqueness of solutions for a class of fractional integral-differential equations with time-delay. Journal of Inner Mongolia Agricultural University(Natural Science Edition), 2014, (35): 169 |
26 |
Li Y , Chen Y Q , Podlubny I . Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica, 2009, 45 (8): 1965- 1969
doi: 10.1016/j.automatica.2009.04.003 |
27 |
Li Y , Chen Y Q , Podlubny I . Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Comput Math Appl, 2010, 59 (5): 1810- 1821
doi: 10.1016/j.camwa.2009.08.019 |
28 |
Hu J B , Lu G P , Zhang S B , et al. Lyapunov stability theorem about fractional system without and with delay. Commun Nonlinear Sci, 2015, 20 (3): 905- 913
doi: 10.1016/j.cnsns.2014.05.013 |
29 |
Aguila-Camacho N , Duarte-Mermoud M A , Gallegos J A . Lyapunov functions for fractional order systems. Commun Nonlinear Sci, 2014, 19 (9): 2951- 2957
doi: 10.1016/j.cnsns.2014.01.022 |
30 | 张琪昌. 分岔与混沌理论及应用. 天津: 天津大学出版社, 2005 |
Zhang Q C . Bifurcation and Chaos Theory and Its Application. Tianjin: Tianjin University Press, 2005 | |
31 | Cooke K L , Van Den Driessche P . On zeroes of some transcendental equations. Funkc Ekvacioj, 1986, 29 (1): 77- 90 |
32 | Matignon D . Stability results for fractional differential equations with applications to control processing. Computational Engineering in Systems Applications, 1996, 2, 963- 968 |
33 |
庄科俊. 一类时滞乙肝病毒模型的稳定性分析. 中北大学学报(自然科学版), 2015, (2): 122- 125
doi: 10.3969/j.issn.1673-3193.2015.02.006 |
Zhuang K J . Stability analysis for a hepatitis B virus model with time delay. Journal of North University of China(Natural Science Edition), 2015, (2): 122- 125
doi: 10.3969/j.issn.1673-3193.2015.02.006 |
|
34 | Van den Driessche P , Watmough J . Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci, 2002, 180 (1/2): 29- 48 |
35 |
Tam J . Delay effect in a model for virus replication. Math Med Bilo: A Journal of the IMA, 1999, 16 (1): 29- 37
doi: 10.1093/imammb/16.1.29 |
36 |
Li M Y , Shu H . Global dynamics of an in-host viral model with intracellular delay. B Math Biol, 2010, 72 (6): 1492- 1505
doi: 10.1007/s11538-010-9503-x |
37 | Ruan S , Wei J . On the zeros of transcendental functions with applications to stability of delay differential equations with two delays. Dynam Cont Dis Ser A, 2003, 10, 863- 874 |
38 | Lasalle J P . The Stability of Dynamical Systems. Philadelphia: SIMA, 1976 |
[1] | 徐家发,罗洪林,刘立山. 一类具有p-Laplacian算子的分数阶差分方程边值问题的正解[J]. 数学物理学报, 2021, 41(2): 402-414. |
[2] | 任晶,翟成波. 基于变分法的回火分数阶脉冲微分系统分析[J]. 数学物理学报, 2021, 41(2): 415-426. |
[3] | 杨帆,王乾朝,李晓晓. 识别Rayleigh-Stokes方程源项的分数阶Landweber迭代正则化方法[J]. 数学物理学报, 2021, 41(2): 427-450. |
[4] | 郭改慧,刘晓慧. 一类自催化可逆生化反应模型的Hopf分支及其稳定性[J]. 数学物理学报, 2021, 41(1): 166-177. |
[5] | 杜丹丹,朱玉灿. K-框架和紧K-框架的算子扰动的稳定性[J]. 数学物理学报, 2021, 41(1): 29-38. |
[6] | 西宣宣,侯咪咪,周先锋. 非自治Caputo分数阶发展方程弱解的适定性与不变集[J]. 数学物理学报, 2021, 41(1): 149-165. |
[7] | 何泽荣,张智强,王阳. 一类非线性年龄等级结构种群模型的稳定性[J]. 数学物理学报, 2020, 40(6): 1712-1722. |
[8] | 马德香,ÖzbeklerAbdullah. 一类带强迫项的高阶半线性分数阶微分方程的广义Lyapunov不等式[J]. 数学物理学报, 2020, 40(6): 1537-1551. |
[9] | 李建利,李安然,魏重庆,李刚. 一类分数阶Schrödinger-Kirchhoff方程多重解的存在性[J]. 数学物理学报, 2020, 40(6): 1612-1621. |
[10] | 韩娅玲,向建林. 一类分数阶p-Laplace方程基态解的存在性及其渐进行为[J]. 数学物理学报, 2020, 40(6): 1622-1633. |
[11] | 李振杰,李磊. 带有凸非线性项的分数阶Laplace方程的解的对称性[J]. 数学物理学报, 2020, 40(5): 1224-1234. |
[12] | 吕静云,杨小远. 基于序方法的Hilfer分数阶积分微分方程的逼近能控性[J]. 数学物理学报, 2020, 40(5): 1282-1294. |
[13] | 朱凯旋,谢永钦,周峰,邓习军. 带有时滞项的复Ginzburg-Landau方程的拉回吸引子[J]. 数学物理学报, 2020, 40(5): 1341-1353. |
[14] | 李伟,黄鹏展. 流体相互作用模型的粘性分离有限元方法[J]. 数学物理学报, 2020, 40(5): 1362-1380. |
[15] | 周永辉. 一类具有时滞的非局部反应扩散方程非单调临界行波解的全局稳定性[J]. 数学物理学报, 2020, 40(4): 983-992. |
|