1 |
Yang J , Yu X . Liouville type theorems for Hartree and Hartree-Fock equations. Nonlinear Anal, 2019, 183, 191- 213
doi: 10.1016/j.na.2019.01.012
|
2 |
Gidas B , Spruck J . A priori bounds of positive solutions of nonlinear elliptic equations. Comm Partial Differential Equations, 1981, 6, 883- 901
doi: 10.1080/03605308108820196
|
3 |
Chen W , Li C . Classification of solutions of some nonlinear elliptic equations. Duke Math J, 1991, 63, 615- 622
|
4 |
Chen W , Li C , Li Y . A direct method of moving planes for the fractional Laplacian. Adv Math, 2017, 308, 404- 437
doi: 10.1016/j.aim.2016.11.038
|
5 |
Chen W , Li C , Ou B . Classification of solutions for an integral equation. Comm Pure Appl Math, 2016, 59, 330- 343
|
6 |
Chen W , Fang Y , Li C . Super poly-harmonic property of solutions for Navier boundary problems on a half space. J Funct Anal, 2013, 265, 1522- 1555
doi: 10.1016/j.jfa.2013.06.010
|
7 |
Chen W , Fang Y , Yang R . Liouville theorems involving the fractional Laplacian on a half space. Adv Math, 2015, 274, 167- 198
doi: 10.1016/j.aim.2014.12.013
|
8 |
Chen W , Li Y , Zhang R . A direct method of moving spheres on fractional order equations. J Funct Anal, 2017, 272, 4131- 4157
doi: 10.1016/j.jfa.2017.02.022
|
9 |
Damascelli L , Gladiali F . Some nonexistence results for positive solutions of elliptic equations in unbounded domains. Rev Mat Iberoamericana, 2004, 20, 67- 86
|
10 |
Guo Y , Liu J . Liouville type theorems for positive solutions of elliptic system in $\mathbb{R}.N$. Comm PDE, 2008, 33, 263- 284
doi: 10.1080/03605300701257476
|
11 |
Guo Y , Liu J . Liouville-type theorems for polyharmonic equations in $\mathbb{R}.N$ and in $\mathbb{R}.N$_+. Proceedings of the Royal Society of Edinburgh, 2008, 138A, 339- 359
|
12 |
Liu J , Guo Y , Zhang Y . Liouville-type theorems for polyharmonic systems in $\mathbb{R}.N$. J Differential Equations, 2006, 225, 685- 709
doi: 10.1016/j.jde.2005.10.016
|
13 |
Yu X . Liouville type theorems for integral equations and integral systems. Calc Var PDE, 2013, 46, 75- 95
doi: 10.1007/s00526-011-0474-z
|
14 |
Yu X . Liouville type theorem in the Heisenberg group with general nonlinearity. Journal of Differential Equations, 2013, 254, 2173- 2182
doi: 10.1016/j.jde.2012.11.021
|
15 |
Yu X . Liouville Type Theorem for Nonlinear Elliptic Equation with General Nonlinearity. Discrete and Continuous Dynamical Systems-Series A, 2014, 34, 4947- 4966
doi: 10.3934/dcds.2014.34.4947
|
16 |
Yu X . Liouville Type Theorem for Nonlinear Elliptic Equation Involving Grushin Operators. Communications in Contemporary Mathematics, 2015, 17, 1450050
doi: 10.1142/S0219199714500503
|
17 |
Yu X . Liouville type theorem for some nonlocal elliptic equations. J Differential Equations, 2017, 263, 6805- 6820
doi: 10.1016/j.jde.2017.07.028
|
18 |
Dou J , Zhu M . Sharp Hardy-Littlewood-Sobolev inequality on the upper half space. Int Math Res Not IMRN, 2015, 2015 (3): 651- 687
doi: 10.1093/imrn/rnt213
|