1 |
Adams A , John F . Sobolev Spaces. Second Edition. New York: Academic Press, 1975
|
2 |
Böhme C , Reissig M . A scale-invariant Klein-Gordon model with time-dependent potential. Ann Univ Ferrara Sez Ⅶ Sci Mat, 2012, 58 (2): 229- 250
|
3 |
Corduneanu C . Principles of Differential and Integral Equations. Boston: Allyn and Bacon Inc, 1971
|
4 |
D'Abbicco M . The threshold of effective damping for semilinear wave equation. Math Methods Appl Sci, 2015, 38 (10): 1032- 1045
|
5 |
Fujita H . On the blowing up of solutions of the Cauchy problem for ut=△u+u1+α. J Fac Sci Univ Tokyo Sect I, 1966, 13: 109- 124
|
6 |
Georgiev V , Lindblad H , Sogge C D . Weighted Strichartz estimates and global existence for semilinear wave equations. Amer J Math, 1997, 119 (6): 1291- 1319
|
7 |
Ikeda M, Wakasugi Y. Global well-posedness for the semilinear wave equation with time dependent damping in the overdamping case. 2017, arXiv: 1708.08044
|
8 |
Ikehata R , Tanizawa K . Global existence of solutions for semilinear damped-wave equations in ${\Bbb R}$n with noncompactly supported initial data. Nonlinear Anal, 2015, 61 (7): 1189- 1208
|
9 |
Li T T , Zhou Y . Breakdown of solutions to □u+ut=|u|1+α. Discrete Contin Dyn Syst, 1995, 1 (4): 503- 520
|
10 |
Lindblad H , Sogge C D . On existence and scattering with minimal regularity for semilinear wave equations. J Funct Anal, 1995, 130 (2): 357- 426
|
11 |
Lin J , Nishihara K , Zhai J . Critical exponent for the semilinear wave equation with time-dependent damping. Discrete Contin Dyn Syst, 2012, 32 (12): 4307- 4320
|
12 |
Nishihara K , Zhai J . Asymptotic behavior of solutions for time dependent damped wave equations. J Math Anal Appl, 2009, 360 (2): 412- 421
|
13 |
Nishihara K . Asymptotic behavior of solutions to the semilinear wave equation with time-dependent damping. Tokyo J Math, 2011, 34 (2): 327- 343
|
14 |
Palmieri A . Global existence of solutions for semilinear wave equation with scaleinvariant damping and mass in exponentially weighted spaces. J Math Anal Appl, 2018, 461 (2): 1215- 1240
|
15 |
Sideris T C . Nonexistence of global solutions to semilinear wave equations in high dimensions. J Differential Equations, 1984, 52 (3): 378- 406
|
16 |
Strauss W A . Nonlinear scattering theory at low energy. J Funct Anal, 1981, 41 (1): 110- 133
|
17 |
Todorova G , Yordanov B . Critical exponent for a nonlinear wave equation with damping. J Differential Equations, 2001, 174 (2): 464- 489
|
18 |
Wakasugi Y. Critical Exponent for the Semilinear Wave Equation with Scale Invariant Damping//Ruzhansky M, Turunen V. Fourier Analysis. Boston: Birkhauser, 2014: 375-390
|
19 |
Wirth J . Solution representations for a wave equation with weak dissipation. Math Meth Appl Sci, 2004, 27 (1): 101- 124
|
20 |
Wirth J . Wave equations with time-dependent dissipation I. Non-effective dissipation. J Differential Equations, 2006, 222 (2): 487- 514
|
21 |
Wirth J . Wave equations with time-dependent dissipation Ⅱ. Effective dissipation. J Differential Equations, 2007, 232 (1): 74- 103
|
22 |
Wirth J. Asymptotic Properties of Solutions to Wave Equations with Time-Dependent Dissipation[D]. Munich: TU Bergakademie Freiberg, 2005
|
23 |
Yagdjian K , Galstian A . Fundamental solutions for the Klein-Gordon equation in de Sitter spacetime. Comm Math Phys, 2009, 285 (1): 293- 344
|
24 |
Yordanov B , Zhang Q S . Finite time blow up for critical wave equations in high dimensions. J Funct Anal, 2006, 231 (2): 361- 374
|
25 |
Zhang Q S . A blow-up result for a nonlinear wave equation with damping:the critical case. C R Acad Sci Paris Sér I Math, 2001, 333 (2): 109- 114
|