数学物理学报 ›› 2020, Vol. 40 ›› Issue (5): 1362-1380.
收稿日期:
2019-07-10
出版日期:
2020-10-26
发布日期:
2020-11-04
通讯作者:
黄鹏展
E-mail:lywinxjst@yeah.net;hpzh007@yahoo.com
作者简介:
李伟, E-mail:基金资助:
Received:
2019-07-10
Online:
2020-10-26
Published:
2020-11-04
Contact:
Pengzhan Huang
E-mail:lywinxjst@yeah.net;hpzh007@yahoo.com
Supported by:
摘要:
针对流体-流体相互作用模型,研究了一种全离散的粘性分离有限元方法.该方法在时间层采用了粘性分解技术和空间混合有限元方法,其中时间项包括两个步骤.第一步,采用向后Euler方法用于时间离散化,采用半隐式方法处理非线性项,并使用几何平均方法处理流体界面.然后,在第二步中,我们只解决了一个线性Stokes问题,而没有对每个单独的区域进行时间步的空间迭代.因此,粘性分离有限元方法将非线性和不可压缩性分开.此外,通过严格的分析验证了该方法的稳定性和收敛性.最后,数值实验表明了该方法的性能.
中图分类号:
李伟,黄鹏展. 流体相互作用模型的粘性分离有限元方法[J]. 数学物理学报, 2020, 40(5): 1362-1380.
Wei Li,Pengzhan Huang. A Viscosity-Splitting Finite Element Method for the Fluid-Fluid Interaction Problem[J]. Acta mathematica scientia,Series A, 2020, 40(5): 1362-1380.
1 |
Aggul M , Connors J M , Erkmen D , Labovsky A E . A defect-deferred correction method for fluid-fluid interaction. SIAM J Numer Anal, 2018, 56 (4): 2484- 2512
doi: 10.1137/17M1148219 |
2 |
Arnold D N , Brezzi F , Fortin M . A stable finite element for the Stokes equations. Calcolo, 1984, 21 (4): 337- 344
doi: 10.1007/BF02576171 |
3 | Bernardi C , Chacon T , Lewandowski R , Murat F . A model for two coupled turbulent fluids Ⅱ:Numerical analysis of a spectral discretization. SIAM J Numer Anal, 2003, 40 (6): 2368- 2394 |
4 | Bernardi C , Rebello T C , Mármol M G , et al. A model for two coupled turbulent fluids Ⅲ:Numerical approximation by finite elements. Numer Math, 2004, 98 (1): 33- 66 |
5 |
Blasco J , Codina R . Error estimates for a viscosity-splitting finite element method for the incompressible Navier-Stokes equations. Appl Numer Math, 2004, 51, 1- 17
doi: 10.1016/j.apnum.2004.02.004 |
6 |
Blasco J , Codina R , Huerta A . A fractional-step method for the incompressible Navier-Stokes equations related to a predictor-multicorrector algorithm. Int J Numer Methods Fluids, 1998, 28 (10): 1391- 1419
doi: 10.1002/(SICI)1097-0363(19981230)28:10<1391::AID-FLD699>3.0.CO;2-5 |
7 | Bresch D , Koko J . Operator-splitting and Lagrange multiplier domain decomposition methods for numerical simulation of two coupled Navier-Stokes fluids. Int J Appl Math Comput Sci, 2006, 16 (4): 419- 429 |
8 |
Chorin A J . Numerical solution of the Navier-Stokes equations. Math Comput, 1968, 22, 745- 762
doi: 10.1090/S0025-5718-1968-0242392-2 |
9 | Connors J M . An ensemble-based conventional turbulence model for fluid-fluid interaction. Inter J Numer Anal Model, 2018, 15 (4): 492- 519 |
10 |
Connors J M , Ganis B . Stability of algorithms for a two domain natural convection problem and observed model uncertainty. Comput Geosci, 2011, 15 (3): 509- 527
doi: 10.1007/s10596-010-9219-x |
11 |
Connors J M , Howell J S . A fluid-fluid interaction method using decoupled subproblems and differing time steps. Numer Meth Part Differ Equ, 2012, 28 (4): 1283- 1308
doi: 10.1002/num.20681 |
12 |
Connors J M , Howell J S , Layton W J . Partitioned time stepping for a parabolic two domain problem. SIAM J Numer Anal, 2009, 47 (5): 3526- 3549
doi: 10.1137/080740891 |
13 |
Connors J M , Howell J S , Layton W J . Decoupled time stepping methods for fluid-fluid interaction. SIAM J Numer Anal, 2012, 50 (3): 1297- 1319
doi: 10.1137/090773362 |
14 |
Fernández M A , Gerbeau J , Smaldone S . Explicit coupling schemes for a fluid-fluid interaction problem arising in hemodynamics. SIAM J Sci Comput, 2014, 36 (6): A2557- A2583
doi: 10.1137/130948653 |
15 |
Girault V , Rivíere B , Wheeler M F . A splitting method using discontinuous Galerkin for the transient incompressible Navier-Stokes equations. ESAIM:Math Model Numer Anal, 2005, 39 (6): 1115- 1147
doi: 10.1051/m2an:2005048 |
16 |
Guermond J L , Salgado A . Error analysis of a fractional time-stepping technique for incompressible flows with variable density. SIAM J Numer Anal, 2011, 49 (3): 917- 944
doi: 10.1137/090768758 |
17 | Guillén-González F , Redondo-Neble M V . New error estimates for a viscosity splitting scheme in time for the three-dimensional Navier-Stokes equations. IMA J Numer Anal, 2011, 31 (2): 556- 579 |
18 | Guillén-González F , Redondo-Neble M V . Spatial error estimates for a finite element viscosity-splitting scheme for the Navier-Stokes equations. Inter J Numer Anal Model, 2013, 10 (4): 826- 844 |
19 |
Guillén-González F , Redondo-Neble M V . Convergence and error estimates of viscosity-splitting finite-element schemes for the primitive equations. Appl Numer Math, 2017, 111, 219- 245
doi: 10.1016/j.apnum.2016.09.011 |
20 |
Heywood J , Rannacher R . Finite element approximation of the nonstationary Navier-Stokes equations, Ⅳ:Error analysis for second order time discretizations. SIAM J Numer Anal, 1990, 27 (2): 353- 384
doi: 10.1137/0727022 |
21 |
Li J , Huang P , Zhang C , Guo G . A linear, decoupled fractional time-stepping method for the nonlinear fluid-fluid interaction. Numer Methods Part Differ Equa, 2019, 35, 1873- 1889
doi: 10.1002/num.22382 |
22 | Li J , Huang P , Su J , Chen Z . A linear, stabilized, non-spatial iterative, partitioned time stepping method for the nonlinear Navier-Stokes/Navier-Stokes interaction model. Bound Value Probl, 2019 |
23 | Lions J L , Temam R , Wang S . Models for the coupled atmosphere and ocean (CAO Ⅰ). Comput Mech Adv, 1993, 1, 5- 54 |
24 | Lions J L , Temam R , Wang S . Numerical analysis of the coupled atmosphere-ocean models (CAO Ⅱ). Comput Mech Adv, 1993, 1, 55- 119 |
25 | Lions J L , Temam R , Wang S . Mathematical theory for the coupled atmosphere-ocean models (CAO Ⅲ). J Math Pures Appl, 1995, 74, 105- 163 |
26 |
Qian L Z , Chen J R , Feng X L . Local projection stabilized and characteristic decoupled scheme for the fluid-fluid interaction problems. Numer Meth Part Differ Equa, 2017, 33 (3): 704- 723
doi: 10.1002/num.22116 |
27 |
Quarteroni A , Saleri F , Veneziani A . Factorization methods for the numerical approximation of Navier-Stokes equations. Comput Methods Appl Mech Eng, 2000, 188 (1-3): 505- 526
doi: 10.1016/S0045-7825(99)00192-9 |
28 | Saleri F , Veneziani A . Pressure correction algebraic splitting methods for the incompressible Navier-Stokes equations. SIAM J Numer Anal, 2005, 43 (1): 174- 194 |
29 | Strikwerda J C , Young S L . The accuracy of the fractional step method. SIAM J Numer Anal, 1999, 37 (1): 37- 47 |
30 | Temam R. Navier-Stokes Equations, Theory and Numerical Analysis. Amsterdam: North Holland, 1984 |
31 |
Zhang Y H , Hou Y R , Shan L . Stability and convergence analysis of a decoupled algorithm for a fluid-fluid interaction problem. SIAM J Numer Anal, 2016, 54 (5): 2833- 2867
doi: 10.1137/15M1047891 |
32 |
Zhang Y H , Hou Y R , Shan L . Error estimates of a decoupled algorithm for a fluid-fluid interaction problem. J Comput Appl Math, 2018, 333, 266- 291
doi: 10.1016/j.cam.2017.10.039 |
33 |
Zhang T , Pedro D , Yuan J Y . A large time stepping viscosity-splitting finite element method for the viscoelastic flow problem. Adv Comput Math, 2015, 41 (1): 149- 190
doi: 10.1007/s10444-014-9353-4 |
34 |
Zhang T , Qian Y X . The time viscosity-splitting method for the Boussinesq problem. J Math Anal Appl, 2017, 445 (1): 186- 211
doi: 10.1016/j.jmaa.2016.07.023 |
35 |
Zhang T , Qian Y X , Yuan J Y . The fully discrete fractional-step method for the Oldroyd model. Appl Numer Math, 2018, 129, 83- 103
doi: 10.1016/j.apnum.2018.03.003 |
[1] | 杨柳,邓醉茶. 退化抛物型方程的一个初值反演问题[J]. 数学物理学报, 2020, 40(4): 891-903. |
[2] | 周永辉. 一类具有时滞的非局部反应扩散方程非单调临界行波解的全局稳定性[J]. 数学物理学报, 2020, 40(4): 983-992. |
[3] | 刘健,张志信,蒋威. 分数阶非线性时滞脉冲微分系统的全局Mittag-Leffler稳定性[J]. 数学物理学报, 2020, 40(4): 1053-1060. |
[4] | 黄星寿,罗日才,王五生. 基于Gronwall积分不等式的比例时滞神经网络稳定性分析[J]. 数学物理学报, 2020, 40(3): 824-832. |
[5] | 马国栋. 一般约束极大极小优化问题一个强收敛的广义梯度投影算法[J]. 数学物理学报, 2020, 40(3): 641-649. |
[6] | 王春,许天周. 2-Banach空间上三次-四次混合型函数方程的Hyers-Ulam-Rassias稳定性[J]. 数学物理学报, 2020, 40(2): 352-368. |
[7] | 何泽荣,张智强,裘哲勇. 一类非线性年龄等级结构种群模型的数值解法[J]. 数学物理学报, 2020, 40(2): 515-526. |
[8] | 廖梦兰,郭斌. 具变指数源项和强阻尼项的波动方程解的渐近稳定性[J]. 数学物理学报, 2020, 40(1): 146-155. |
[9] | 王茹,张仲华,刘叶玲. 一类具有信号分子调节作用的非连续模型的动力学性质[J]. 数学物理学报, 2019, 39(6): 1545-1554. |
[10] | 张利民,徐海燕,金春花. 具渗流扩散和间接信号产生的Prey-Taxis模型解的整体存在性与稳定性[J]. 数学物理学报, 2019, 39(6): 1381-1404. |
[11] | 梁聪刚,杨晓侠,石东洋. 抛物积分微分方程的Wilson元收敛性分析[J]. 数学物理学报, 2019, 39(5): 1158-1169. |
[12] | 章茜,蔡光辉. WOD随机变量序列的完全收敛性和矩完全收敛性[J]. 数学物理学报, 2019, 39(5): 1183-1191. |
[13] | 靖晓洁, 赵爱民, 刘桂荣. 考虑部分免疫和环境传播的麻疹传染病模型的全局稳定性[J]. 数学物理学报, 2019, 39(4): 909-917. |
[14] | 张根根,王晚生,肖爱国. 一类变延迟中立型微分方程梯形方法的渐近估计[J]. 数学物理学报, 2019, 39(3): 560-569. |
[15] | 崔静,梁秋菊,毕娜娜. 分数布朗运动驱动的带脉冲的中立性随机泛函微分方程的渐近稳定性[J]. 数学物理学报, 2019, 39(3): 570-581. |
|