数学物理学报 ›› 2020, Vol. 40 ›› Issue (5): 1175-1185.
收稿日期:
2019-09-18
出版日期:
2020-10-26
发布日期:
2020-11-04
作者简介:
李海侠, E-mail:基金资助:
Received:
2019-09-18
Online:
2020-10-26
Published:
2020-11-04
Supported by:
摘要:
研究了一类具有毒素的非均匀chemostat食物链模型.运用稳定性理论分析了平凡解和半平凡解的稳定性,并采用最大值原理和上下解方法给出了正解的先验估计.接着,利用不动点指数理论得到了正解存在的充分条件.最后,通过扰动理论和分歧理论讨论了毒素对动力学行为的影响,得到正解的稳定性和唯一性.结果表明毒素存在时,当微生物u和v的生长率较大时物种能共存.进而当毒素的影响充分大且微生物v的生长率介于一定范围内时系统存在唯一且稳定的正解.
中图分类号:
李海侠. 一类具有毒素的非均匀chemostat模型正解的存在性和唯一性[J]. 数学物理学报, 2020, 40(5): 1175-1185.
Haixia Li. Existence and Uniqueness of Positive Solutions to an Unstirred Chemostat with Toxins[J]. Acta mathematica scientia,Series A, 2020, 40(5): 1175-1185.
1 |
Wu J H . Global bifurcation of coexistence state for the competition model in the chemostat. Nonlinear Anal, 2000, 39, 817- 835
doi: 10.1016/S0362-546X(98)00250-8 |
2 |
Hsu S B , Waltman P . A model of the effect of anti-competitor toxins on plasmid-bearing, plamid-free competition. Taiwanese J Math, 2002, 6, 135- 155
doi: 10.11650/twjm/1500407405 |
3 | Zheng S , Liu J . Coexistence solutions for a reaction-diffusion system of un-stirred chemostat model. Appl Math Comput, 2003, 145, 579- 590 |
4 |
Nie H , Wu J H . A system of reaction-diffusion equations in the unstirred chemostat with an inhibitor. Internat J Bifur Chaos, 2006, 16, 989- 1009
doi: 10.1142/S0218127406015246 |
5 | Wu J H , Nie H , Wolkowicz G . The effect of inhibitor on the plasmid-bearing and plasmid-free model in the unstirred chemostat. SIAM J Math Anal, 2007, 38 (6): 1860- 1885 |
6 |
Pang G P , Chen L S . Analysis of a Beddington-DeAngelis food chain chemostat with periodically varying substrate. J Math Chem, 2008, 44, 467- 481
doi: 10.1007/s10910-007-9321-z |
7 |
Nie H , Wu J H . Positive solutions of a competition model for two resources in the unstirred chemostat. J Math Anal Appl, 2009, 355, 231- 242
doi: 10.1016/j.jmaa.2009.01.045 |
8 | 李艳玲, 李海侠, 吴建华. 一类非均匀Chemostat模型的共存态. 数学学报, 2009, 52 (1): 141- 152 |
Li Y L , Li H X , Wu J H . Coexistence states of the unstirred chemostat model. Acta Math Sin, 2009, 52 (1): 141- 152 | |
9 | Meng X, Li Z, Nieto J J. Dynamic analysis of Michaelis-Menten chemostat-type competition models with time delay and pulse in a polluted environment. J Math Chem, 2010, 47: 123-144 |
10 |
Hsu S B , Jiang J F , Wang F B . On a system of reaction-diffusion equations arising from competition with internal storage in an unstirred chemostat. J Differential Equations, 2010, 248 (10): 2470- 2496
doi: 10.1016/j.jde.2009.12.014 |
11 |
Wang Y E , Wu J H , Guo G H . Coexistence and stability of an unstirred chemostat model with Beddington-DeAngelis function. Comput Math Appl, 2010, 60, 2497- 2507
doi: 10.1016/j.camwa.2010.08.057 |
12 |
Nie H , Wu J H . Coexistence of an unstirred chemostat model with Beddington-DeAngelis functional response and inhibitor. Nonlinear Anal Real World Appl, 2010, 11, 3639- 3652
doi: 10.1016/j.nonrwa.2010.01.010 |
13 |
Wang Y F , Yin J X . Global dynamics of the periodic un-stirred chemostat with a toxin-producing competitor. Commun Pure Appl Anal, 2010, 9, 1639- 1651
doi: 10.3934/cpaa.2010.9.1639 |
14 | Nie H , Wu J H . The effect of toxins on the plasmid-bearing and plasmid-free model in the unstirred chemostat. Discrete Contin Dyn Syst, 2012, 32 (1): 303- 329 |
15 |
Weedermann M . Analysis of a model for the effects of an external toxin on anaerobic digestion. Math Biosci Eng, 2012, 9, 445- 459
doi: 10.3934/mbe.2012.9.445 |
16 |
Nie H , Wu J H . Multiple coexistence solutions to the unstirred chemostat model with plasmid and toxin. Eur J Appl Math, 2014, 25, 481- 510
doi: 10.1017/S0956792514000096 |
17 | 李海侠. 一类带B-D反应项的非均匀Chemostat模型正解的存在性和多解性. 工程数学学报, 2015, 32 (3): 369- 380 |
Li H X . Existence and multiplicity of positive solutions for an unstirred chemostat model with B-D functional response. Chinese Journal of Engineering Mathematics, 32, 3, 369- 380 | |
18 | Jiang D H , Nie H , Wu J H . Crowding effects on coexistence solutions in the unstirred chemostat. Appl Anal, 2017, 96 (6): 1016- 1046 |
19 | Li H X , Wu J H , Li Y L , Liu C A . Positive solutions to the unstirred chemostat model with Crowley-Martin functional response. Discrete Contin Dyn Syst Ser B, 2018, 23 (8): 2951- 2966 |
20 |
Nie H , Hsu S B , Wang F B . Steady-state solutions of a reaction-diffusion system arising from intraguild predation and internal storage. J Differential Equations, 2019, 266 (12): 8459- 8491
doi: 10.1016/j.jde.2018.12.035 |
21 | Jia J W , Jiao J J . Dynamical analysis of two-nutrient and one-microorganism delayed chemostat model with pulsed input in the polluted environment. Math Appl, 2014, 27 (1): 34- 43 |
22 | 付盈洁, 蓝桂杰, 张树文, 魏春金. 污染环境下具有脉冲输人的随机捕食-食饵模型的动力学研究. 数学物理学报, 2019, 39 |
Fu Y J , Lan G J , Zhang S W , Wei C J . Dynamics of a stochastic predaroe-prey model with pulse input in a polluted environment. Acta Math Sci, 2019, 39A (3): 674- 688 | |
23 |
Li M W , Shao Y F , Yang Y F . Analysis of a delayed stochastic one-predator two-prey population model in a polluted environment. J Appl Math Phys, 2019, 7, 2265- 2282
doi: 10.4236/jamp.2019.710154 |
24 |
Li D M , Guo T , Xu Y J . The effects of impulsive toxicant input on a single-species population in a small polluted environment. Math Biocica Eng, 2019, 16 (6): 8179- 8194
doi: 10.3934/mbe.2019413 |
25 | Belgacem F . Elliptic Boundary Value Problems with Indefinite Weights: Variational Formulations of the Principal Eigenvalue and Applications. Harlow: Addison-Wesley Longman, 1997 |
26 |
Dancer E N . On the indices of fixed points of mapping in cones and applications. J Math Anal Appl, 1983, 91, 131- 151
doi: 10.1016/0022-247X(83)90098-7 |
27 |
Crandall M G , Rabinowitz P H . Bifurcation from simple eigenvalue. J Funct Anal, 1971, 8, 321- 340
doi: 10.1016/0022-1236(71)90015-2 |
[1] | 许诗敏,王春花. Kirchhoff方程单峰解的局部唯一性[J]. 数学物理学报, 2020, 40(2): 432-440. |
[2] | 付盈洁,蓝桂杰,张树文,魏春金. 污染环境下具有脉冲输入的随机捕食-食饵模型的动力学研究[J]. 数学物理学报, 2019, 39(3): 674-688. |
[3] | 周凯,金路. 以较低截断重数分担超平面的亚纯映射的唯一性问题[J]. 数学物理学报, 2019, 39(1): 1-14. |
[4] | 贠永震,苏有慧,胡卫敏. 一类具有p-Laplacian算子的分数阶微分方程反周期边值问题解的存在唯一性[J]. 数学物理学报, 2018, 38(6): 1162-1172. |
[5] | 李海侠. 一类食物链模型正解的稳定性和唯一性[J]. 数学物理学报, 2017, 37(6): 1094-1104. |
[6] | 陈省江. 整函数的周期性与唯一性的进一步结果[J]. 数学物理学报, 2016, 36(5): 911-918. |
[7] | 玄祖兴, 徐洪焱. 解析函数的Borel方向与唯一性[J]. 数学物理学报, 2016, 36(4): 740-749. |
[8] | 曾娟娟, 刘慧芳. 亚纯函数的非线性微分多项式分担多项式的唯一性[J]. 数学物理学报, 2016, 36(2): 254-266. |
[9] | 罗杰, 林伟川. 涉及分担三值的非整数级亚纯函数的唯一性定理[J]. 数学物理学报, 2016, 36(2): 244-253. |
[10] | 冯育强, 王蔚敏, 李寿贵. 带有奇异非线性项的分数微分方程周期解的存在性与唯一性[J]. 数学物理学报, 2015, 35(6): 1059-1070. |
[11] | 曹红哲, 许庆勇. 涉及较少小映射的多复变亚纯映射唯一性定理[J]. 数学物理学报, 2015, 35(6): 1158-1167. |
[12] | 刘慧芳, 孙道椿. 具有公共小函数的代数体函数的唯一性[J]. 数学物理学报, 2015, 35(2): 274-281. |
[13] | 小巴桑次仁. RELLICH 引理的新证明[J]. 数学物理学报, 2014, 34(6): 1435-1439. |
[14] | 刘慧芳. 代数体函数与其导数的唯一性[J]. 数学物理学报, 2014, 34(5): 1296-1303. |
[15] | 姜云波, 高宗升. 涉及CM分担值的代数体函数的唯一性[J]. 数学物理学报, 2014, 34(4): 796-801. |
|