数学物理学报 ›› 2020, Vol. 40 ›› Issue (5): 1163-1174.

• 论文 • 上一篇    下一篇

调和线性微分算子的半径问题

扈振永,王麒翰,龙波涌*()   

  1. 安徽大学数学科学学院 合肥 230601
  • 收稿日期:2018-04-02 出版日期:2020-10-26 发布日期:2020-11-04
  • 通讯作者: 龙波涌 E-mail:longboyong@ahu.edu.cn
  • 基金资助:
    国家自然科学基金(11501001);安徽省自然科学基金面上项目(1908085MA18);安徽大学科研项目(Y01002428)

The Problem of the Radii of a Harmonic Linear Differential Operator

Zhenyong Hu,Qihan Wang,Boyong Long*()   

  1. School of Mathematic Sciences, Anhui University, Hefei 230601
  • Received:2018-04-02 Online:2020-10-26 Published:2020-11-04
  • Contact: Boyong Long E-mail:longboyong@ahu.edu.cn
  • Supported by:
    the NSFC(11501001);the Foundations of Anhui Natural Science(1908085MA18);Anhui Universit(Y01002428)

摘要:

对于单位圆盘上的调和映射$ f_{i}(z)=h_{i}(z)+\overline{g_{i}(z)}$的系数满足给定的条件,研究凸组合$(1-t)L^{\epsilon}_{f_{1}}+tL^{\epsilon}_{f_{2}} $的$\alpha$阶完全凸半径及$\alpha$阶完全星形半径,其中$ L^{\epsilon }_{f_{i}}=zf_{i_{z}}-\epsilon\overline{z}f_{i_{\overline{z}}}$$ |\epsilon|=1$)表示$f_{i} $的微分算子.此外,给出调和映射的卷积在微分算子下的$ \alpha$阶完全凸半径及$ \alpha$阶完全星形半径.所得结果均为最佳.

关键词: 调和映射, 凸组合, α阶完全凸, α阶完全星形

Abstract:

For harmonic mappings $ f_{i}(z)=h_{i}(z)+\overline{g_{i}(z)}$($ i=1, 2$) defined in the unit disk satisfying the given coefficient conditions, we consider the radii of full convexity and full starlikeness of order $\alpha $ for the convex combination $ (1-t)L^{\epsilon}_{f_{1}}+tL^{\epsilon}_{f_{2}}$, where $ L^{\epsilon}_{f_{i}}=z\frac{\partial f_{i}}{\partial z}-\epsilon\overline{z}\frac{\partial f_{i}}{\partial\overline{z}}(|\epsilon|=1)$ denotes the differential operator of $ f_{i}$. In addition, we obtain the radii of fully convex and full starlikeness of order $\alpha $ for convolution of harmonic mappings under the differential operator. All results are sharp.

Key words: Harmonic mappings, Convex combination, Fully convex of order α, Fully starlike of order α

中图分类号: 

  • O174.5