数学物理学报 ›› 2020, Vol. 40 ›› Issue (4): 947-976.

• 论文 • 上一篇    

旋转重力毛细管双层流中的小振幅孤立界面行波

王灵君, 王秋思   

  1. 武汉科技大学理学院数学与统计系 武汉 430065
  • 收稿日期:2019-05-04 修回日期:2019-12-30 发布日期:2020-08-20
  • 通讯作者: 王灵君 E-mail:wanglingjun@wust.edu.cn
  • 作者简介:王秋思,E-mail:wangqswust@163.com
  • 基金资助:
    国家自然科学基金(11771342)

Small-Amplitude Solitary Interfacial Traveling Waves in a Gravity-Capillary Two-Layered Fluid with Vorticity

Wang Lingjun, Wang Qiusi   

  1. College of Science, Wuhan University of Science and Technology, Wuhan 430065
  • Received:2019-05-04 Revised:2019-12-30 Published:2020-08-20
  • Supported by:
    Supported by the NSFC (11771342)

摘要: 该文考虑深度有限,上下边界均固定且受重力及内界面张力作用的二维旋转双层流体.在两层中流体粒子的速度均不超过波速的假设下,证明在该双层流体内部界面上行进的小振幅孤波的存在性.论证过程主要基于中心流形约化定理及动力系统方法.通过考察由原水动力问题所得的哈密尔顿系统在平衡点处线性部分的谱,及其在参数平面内的分叉图,得到了约化方程组的同宿轨道解,这进而给出了内界面上的稳定孤波.

关键词: 双层流体, 旋度, 界面张力, 分叉理论

Abstract: Considered in this paper is a two-dimensional rotational two-layered fluid with finite thickness, rigid bottom and upper lid, and acted upon by gravity and interfacial tension. Under the assumption that in both layers of the fluid the horizontal velocity of the fluid particle does not exceed the wave speed, we prove the existence of small-amplitude solitary waves traveling at the interface of the fluid. The argument is mainly based on the center-manifold reduction technique and the dynamical systems methods. By studying the spectrum of the linearization at the equilibrium of the Hamiltonian system formulated from the hydrodynamic problem, and its bifurcation diagram in the parameter plane, we obtain the homoclinic solutions of the reduced system which gives the solitary interfacial water waves.

Key words: Two-layer fluid, Vorticity, Interfacial tension, Bifurcation theory

中图分类号: 

  • O175.29