[1] Amick C J, Turner R E L. A global theory of internal solitary waves in two-fluid systems. Trans Amer Math Soc, 1986, 298(2):431-484 [2] Amick C J, Turner R E L. Small internal waves in two-fluid systems. Arch Ration Mech Anal, 1989, 108(2):111-139 [3] Sun S M, Shen M C. Exact theory of generalized solitary waves in a two-layer liquid in the absence of surface tension. J Math Anal Appl, 1993, 180(1):245-274 [4] Kirrmann P. Reduktion nichtlinearer elliptischer systeme in Zylindergebeiten unter Verwendung von optimaler Regularitat in Hölder-Räumen[D]. Stuttgart:Universitat Stuttgart, 1991 [5] Nilsson D V. Internal gravity-capillary solitary waves in finite depth. Math Meth Appl Sci, 2017, 40(4):1053-1080 [6] Sun S M, Shen M C. Solitary waves in a two-layer fluid with surface tension. SIAM J Math Anal, 1993, 24(4):866-891 [7] Nilsson D V. Three-dimensional internal gravity-capillary waves in finite depth. Math Meth Appl Sci, 2019, 42(12):4113-4145 [8] Constantin A, Strauss W. Exact steady periodic water waves with vorticity. Comm Pure Appl Math, 2004, 57(4):481-527 [9] Groves M D, Wahlén E. Spatial dynamics methods for solitary gravity-capillary water waves with an arbitrary distribution of vorticity. SIAM J Math Anal, 2007, 39(3):932-964 [10] Groves M D, Wahlén E. Small-amplitude Stokes and solitary gravity water waves with an arbitrary distribution of vorticity. Physica D, 2008, 237:1530-1538 [11] Compelli A. Hamiltonian approach to the modeling of internal geophysical waves with vorticity. Monatsh Math, 2016, 179(4):509-521 [12] Compelli A, Ivanov R. On the dynamics of internal waves interacting with the equatorial undercurrent. J Nonlinear Math Phys, 2015, 22:531-539 [13] Constantin A, Ivanov R I. A Hamiltonian approach to wave-current interactions in two-layer fluids. Phys Fluids, 2015, 27:086603 [14] Ambrose D M, Strauss W A, Wright J D. Global bifurcation theory for periodic traveling interfacial gravity capillary waves. Ann Inst H Poincare Non Linear Anal, 2016, 33(4):1081-1101 [15] Bühler O, Shatah J, Walsh S. Steady water waves in the presence of wind. SIAM J Math Anal, 2013, 45(4):2182-2227 [16] Matioc A-V. Steady internal water waves with a critical layer bounded by the wave surface. J Non Math Phy, 2012, 19(1):1250008 [17] Chu J, Ding Q, Yang Y. Steady periodic waves and formal stability for fixed-depth rotational equatorial flows. J Differ Equations 2020, DOI:10.1016/j.jde.2020.03.040 [18] Wang L J. Small-amplitude solitary and generalized solitary traveling waves in a gravity two-layer fluid with vorticity. Nonlinear Analysis:TMA, 2017, 150:159-193 [19] Constantin A, Ivanov R I, Martin C-I. Hamiltonian formulation for wave-current interactions in stratified rotational flows. Arch Ration Mech Anal, 2016, 221(3):1417-1447 [20] Le H. Elliptic equations with transmission and Wentzell boundary conditions and an application to steady water waves in the presence of wind. Discrete Contin Dyn Syst-A, 2018, 38(7):3357-3385 [21] Wheeler M. On stratified water waves with critical layers and Coriolis forces. Discrete Cont Dyn Syst 2019, 8:4747-4770 [22] Compelli A. Solitary wave solution of flat surface internal geophysical waves with vorticity. AIP Conference Proceedings, 2017, 1895(1):040002 [23] 梅建琴, 张鸿庆. 2+1维广义浅水波方程的类孤子解与周期解. 数学物理学报,2005, 25A(6):784-788 Mei J Q, Zhang H Q. Some soliton-like and periodic solutions for a (2+1)-dimensional generalization of shallow water wave equation. Acta Math Sci, 2005, 25A(6):784-788 [24] Groves M D, Toland J F. On variational formulations for steady water waves. Arch Ration Mech Anal, 1997, 137(3):203-226 [25] Mielke A. Reduction of quasilinear elliptic equations in cylindrical domains with applications. Math Methods Appl Sci, 1988, 10(1):51-66 [26] Mielke A. Hamiltonian and Lagrangian Flows on Center Manifolds. Berlin:Springer-Verlag, 1991 [27] Buffoni B, Groves M D, Toland J F. A plethora of solitary gravity-capillary water waves with nearly critical Bond and Froude numbers. Philos Trans Roy Soc Lond A, 1996, 354(1707):575-607 [28] Atkinson F V. Discrete and Continuous Boundary Problems. New York:Academic Press, 1964 [29] Binding P A, Browne P J. Application of two parameter eigencurves to Sturm-Liouville problems with eigenparameter-dependent boundary conditions. Proc Roy Soc Edinburgh, 1995, 125(6):1205-1218 [30] Wahlén E. Steady periodic capillary-gravity waves with vorticity. SIAM J Math Anal, 2006, 38(3):921-943 [31] Bognár J. Indefinite Inner Product Spaces. New York:Springer-Verlag, 1974 [32] Iohvidov I S, Krein M G, Langer H. Introduction to the Spectral Theory of Operators in Spaces with an Indefinite Metric. Berlin:Akademie-Verlag, 1982 [33] Buffoni B, Groves M D. A multiplicity result for solitary gravity-capillary waves in deep water via criticalpoint theory. Arch Ration Mech Anal, 1999, 146(3):183-220 [34] Meyer K R, Hall G R, Offin D. Introduction to Hamiltonian Dynamical Systems and the N-Body Problem. New York:Springer-Verlag, 2009 [35] Buffoni B, Champneys A R, Toland J F. Bifurcation and coalescence of a plethora of homoclinic orbits for a Hamiltonian system. J Dyn Differ Equations, 1996, 8(2):221-279 |