数学物理学报 ›› 2020, Vol. 40 ›› Issue (4): 842-849.

• 论文 • 上一篇    下一篇

Kirchhoff型方程有关的非线性方程多解的存在性

梁文翠,张正杰()   

  1. 华中师范大学数学与统计学学院 武汉 430079
  • 收稿日期:2019-01-30 出版日期:2020-08-26 发布日期:2020-08-20
  • 作者简介:张正杰, E-mail:zjz@ccnu.edu.cn
  • 基金资助:
    国家自然科学基金(11071095);国家自然科学基金(11371159)

Multiple Solutions for Nonlinear Equations Related to Kirchhoff Type Equations

Wencui Liang,Zhengjie Zhang()   

  1. School of Mathematics and Statistics, Central China Normal University, Wuhan 430079
  • Received:2019-01-30 Online:2020-08-26 Published:2020-08-20
  • Supported by:
    the NSFC(11071095);the NSFC(11371159)

摘要:

该文研究如下Kirchhoff型方程
$\left\{\begin{array}{ll}-\left(a+b\int_{\mathbb{R}^{3}}{|\nabla u{{|}^{2}}}\right)\triangle u+u=\left(1+\varepsilon g(x)\right) u^{p}, x\in\mathbb{R}^{3}, \\u\in H^{1}\left(\mathbb{R}^{3}\right), \end{array}\right. $
其中$\varepsilon$, $a$, $b$都是正常数, $1< p<5,g(x)\in L^{\infty}\left(\mathbb{R}^{3}\right)$.应用扰动的方法证明了:对于适当的$g(x)$,存在$\varepsilon_{0}$,当$0<\varepsilon <\varepsilon_{0}$时,上述问题存在多解.

关键词: Kirchhoff方程, 多解, 扰动方法, 非线性

Abstract:

In this paper, we will discuss the following Kirchhoff equation
$\left\{\begin{array}{ll}-\left(a+b\int_{\mathbb{R}^{3}}{|\nabla u{{|}^{2}}}\right)\triangle u+u=\left(1+\varepsilon g(x)\right) u^{p}, x\in\mathbb{R}^{3}, \\u\in H^{1}\left(\mathbb{R}^{3}\right), \end{array}\right. $
where $\varepsilon$, $a$, $b$ are positive constants, $1< p<5,g(x)\in L^{\infty}\left(\mathbb{R}^{3}\right)$. When $g(x)$ satisfy some conditions, we use perturbation method prove that there exists a $\varepsilon_{0}$, if $0<\varepsilon <\varepsilon_{0}$ there are many solutions for above problem.

Key words: Kirchhoff equations, Multiple solutions, Perturbation method, Nonlinear

中图分类号: 

  • O175.23