摘要:
该文研究如下Kirchhoff型方程
$\left\{\begin{array}{ll}-\left(a+b\int_{\mathbb{R}^{3}}{|\nabla u{{|}^{2}}}\right)\triangle u+u=\left(1+\varepsilon g(x)\right) u^{p}, x\in\mathbb{R}^{3}, \\u\in H^{1}\left(\mathbb{R}^{3}\right), \end{array}\right. $
其中$\varepsilon$, $a$, $b$都是正常数, $1< p<5,g(x)\in L^{\infty}\left(\mathbb{R}^{3}\right)$.应用扰动的方法证明了:对于适当的$g(x)$,存在$\varepsilon_{0}$,当$0<\varepsilon <\varepsilon_{0}$时,上述问题存在多解.
中图分类号:
梁文翠,张正杰. Kirchhoff型方程有关的非线性方程多解的存在性[J]. 数学物理学报, 2020, 40(4): 842-849.
Wencui Liang,Zhengjie Zhang. Multiple Solutions for Nonlinear Equations Related to Kirchhoff Type Equations[J]. Acta mathematica scientia,Series A, 2020, 40(4): 842-849.