数学物理学报 ›› 2020, Vol. 40 ›› Issue (3): 641-649.

• 论文 • 上一篇    下一篇

一般约束极大极小优化问题一个强收敛的广义梯度投影算法

马国栋()   

  1. 玉林师范学院数学与统计学院&广西高校复杂系统优化与大数据处理重点实验室 广西玉林 537000
  • 收稿日期:2019-03-22 出版日期:2020-06-26 发布日期:2020-07-15
  • 作者简介:马国栋, E-mail:mgd2006@163.com
  • 基金资助:
    广西自然科学基金(2018GXNSFAA281099);国家自然科学基金(11771383);玉林师范学院科研项目(2019YJKY16);玉林师范学院科研项目(G20150010)

A Strongly Convergent Generalized Gradient Projection Method for Minimax Optimization with General Constraints

Guodong Ma()   

  1. School of Mathematics and Statistics & Guangxi Colleges and Universities Key Laboratory of Complex System Optimization and Big Data Processing, Yulin Normal University, Guangxi Yulin 537000
  • Received:2019-03-22 Online:2020-06-26 Published:2020-07-15
  • Supported by:
    the NSF of Guangxi Province(2018GXNSFAA281099);the NSFC(11771383);the Research Projects of Yulin Normal University(2019YJKY16);the Research Projects of Yulin Normal University(G20150010)

摘要:

该文考虑求解带非线性不等式和等式约束的极大极小优化问题,借助半罚函数思想,提出了一个新的广义投影算法.该算法具有以下特点:由一个广义梯度投影显式公式产生的搜索方向是可行下降的;构造了一个新型的最优识别控制函数;在适当的假设条件下具有全局收敛性和强收敛性.最后,通过初步的数值试验验证了算法的有效性.

关键词: 非线性一般约束, 极大极小问题, 广义梯度投影算法, 全局收敛性, 强收敛性

Abstract:

In this paper, minimax optimization problems with inequality and equality constraints is discussed. The original problem is transformed into an associated simple problem with a penalty term and only inequality constraints, then a new generalized gradient projection algorithm is presented. The main characters of the proposed algorithm are as follows:the improved search direction is generated by only one generalized gradient projection explicit formula; the new optimal identification function is introduced; the algorithm is globally and strongly convergent under some mild assumptions. Finally, the numerical results show that the proposed algorithm is promising.

Key words: Nonlinear general constraints, Minimax optimization problems, Generalized gradient projection method, Global convergence, Strong convergence

中图分类号: 

  • O221.2