数学物理学报 ›› 2020, Vol. 40 ›› Issue (2): 475-483.

• 论文 • 上一篇    下一篇

重尾非线性自回归模型自加权M-估计的渐近分布

傅可昂(),丁丽,李君巧   

  1. 浙江工商大学统计与数学学院 杭州 310018
  • 收稿日期:2018-09-27 出版日期:2020-04-26 发布日期:2020-05-21
  • 作者简介:傅可昂, E-mail:fukeang@hotmail.com
  • 基金资助:
    国家自然科学基(11971432);浙江省自然科学基金(LY17A010004);浙江省一流学科A类(浙江工商大学统计学)

Asymptotics for the Self-Weighted M-Estimation of Nonlinear Autoregressive Models with Heavy-Tailed Errors

Keang Fu(),Li Ding,Junqiao Li   

  1. School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 310018
  • Received:2018-09-27 Online:2020-04-26 Published:2020-05-21
  • Supported by:
    the NSFC(11971432);the NSF of Zhejiang Province(LY17A010004);the First Class Discipline of Zhejiang-A(浙江工商大学统计学)

摘要:

考虑非线性自回归模型xt=fxt-1,…,xt-pθ)+εt,其中θq维未知参数,εt为随机误差.在允许误差方差无穷的重尾条件下,构造θ的自加权M-估计,并证明了该估计的渐近正态性.最后通过数值模拟,在随机误差服从某些重尾分布的条件下,说明自加权M-估计比最小二乘和L1估计更有效.

关键词: 非线性自回归, 自加权M-估计, 重尾, 渐近正态

Abstract:

Consider the nonlinear autoregressive model xt=f(xt-1, …, xt-p, θ)+εt, where θ is the q-dimensional unknown parameter and εt's are random errors with possibly infinite variance. In this paper, the self-weighted M-estimator of θ is constructed, and the asymptotic normality of the proposed estimator is also established. Some simulation studies are also given to show that the self-weighted M-estimators have good performances with some heavy-tailed random errors.

Key words: Nonlinear autoregression, Self-weighted M-estimator, Heavy tail, Asymptotic normality

中图分类号: 

  • O212.1