Limin Zhang,Haiyan Xu,Chunhua Jin. Global Existence and Stability to a Prey-Taxis Model with Porous Medium Diffusion and Indirect Signal Production[J]. Acta mathematica scientia,Series A, 2019, 39(6): 1381-1404.
Aiseba B , Bendahmane M , Noussair A . A reaction-diffusion system modeling predator-prey with pre-taxis. Nonlinear Anal Real World Anal, 2008, 9: 2086- 2105
doi: 10.1016/j.nonrwa.2007.06.017
2
Gao X , Zhou J , Tian M . Global boundedness and asymptotic behavior for an attraction-repulsion chemotaxis system with logistic source. Acta Math Sci, 2017, 37A: 113- 121
3
Jin C . Global classical solution and boundedness to a chemotaxis-haptotaxis model with re-establishment mechanism. Bull London Math Soc, 2018, 50: 598- 618
doi: 10.1112/blms.12160
4
Jin C . Large time behavior of solutions to a chemotaxis model with porous medium diffusion. J Math Anal Appl, 2019, 478: 195- 211
doi: 10.1016/j.jmaa.2019.05.027
5
Jin H , Wang Z . Global stability of prey-taxis systems. J Differential Equations, 2017, 262: 1257- 1290
doi: 10.1016/j.jde.2016.10.010
6
Kareiva P , Odell G . Swarms of predators exhibit "prey-taxis" if individual predators use area-restricted search. Amer Nat, 1987, 130: 233- 270
doi: 10.1086/284707
7
Lee J M , Hillen T , Lewis M A . Pattern formation in prey-taxis systems. J Biol Dynam, 2009, 3: 551- 573
doi: 10.1080/17513750802716112
8
Stinner C , Surulescu C , Winkler M . Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion. SIAM J Math Anal, 2014, 46: 1969- 2007
doi: 10.1137/13094058X
9
Sugiyama Y . Time global existence and asymptotic behavior of solutions to degenerate quasilinear parabolic systems of chemotaxis. Differential Integral Equations, 2007, 20: 133- 180
10
Tao Y . Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis. Nonlinear Anal Real World Anal, 2010, 11: 2056- 2064
doi: 10.1016/j.nonrwa.2009.05.005
11
Tello J , Wrzosek D . Predator-prey model with diffusion and indirect prey-taxis. Mathematical Models and Methods in Applied Science, 2016, 11: 2129- 2162
12
Tao Y , Winkler M . Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion. Discrete Contin Dyn Syst, 2012, 32: 1901- 1914
doi: 10.3934/dcds.2012.32.1901
13
Wu S , Shi J , Wu B . Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis. J Differential Equations, 2016, 260: 5847- 5874
doi: 10.1016/j.jde.2015.12.024
14
Wang X , Wang W , Zhang G . Global bifurcation of solutions for a predator-prey model with prey-taxis. Math Methods Appl Sci, 2015, 38: 431- 443
doi: 10.1002/mma.3079
15
Winkler M. Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model. J Differential Equations, 2010, 248: 2889-2905
16
Winkler M . Chemotaxis with logistic source:very weak global solutions and their boundedness properties. J Math Anal Appl, 2008, 348: 708- 729
doi: 10.1016/j.jmaa.2008.07.071
17
Zheng P , Mu C , Hu X . Persistence property in a two-species chemotaxis system with two signals. J Math Phys, 2017, 58 (11): 111501
doi: 10.1063/1.5010681
18
Wu Z Q , Yin J X , Wang C P . Introduction to Elliptic and Parabolic Equations. Beijing: Science Press, 2003