1 |
Yadin M , Naor P . Queueing system with a removable service station. Operation Research Quarterly, 1963, 14 (4): 393- 405
doi: 10.1057/jors.1963.63
|
2 |
Balachandran K . Control policies for a single server system. Management Science, 1973, 19 (4): 1013- 1018
|
3 |
Heyman D P . $T$-policy for the $M/G/1$ queue. Management Science, 1977, 23 (7): 775- 778
doi: 10.1287/mnsc.23.7.775
|
4 |
Doshi B . Queueing systems with vacations-A survey. Queueing Systems, 1986, 1: 29- 66
doi: 10.1007/BF01149327
|
5 |
Ke J C . Modified $T$ vacation policy for an $M/G/1$ queueing system with an unreliable server and startup. Mathematical and Computer Modeling, 2005, 41: 1267- 1277
doi: 10.1016/j.mcm.2004.08.009
|
6 |
Lee H W , Beak J W , Jeon J . Analysis of the $M^X/G/1$ queue under $D$-policy. Stochastic Analysis and Applications, 2005, 23 (4): 785- 808
doi: 10.1081/SAP-200064479
|
7 |
Wang K H , Kuo C C , Ke J C . Optical control of the $D$-policy $M/G/1$ queueing system with server breakdowns. American Journal of Applied Science, 2008, 5 (5): 565- 573
doi: 10.3844/ajassp.2008.565.573
|
8 |
Lan S J , Tang Y H . Analysis of $D$-policy discrete-time $Geo/G/1$ queue with second J-optional service and unreliable server. RAIRO-Operations Research, 2017, 51 (1): 101- 122
doi: 10.1051/ro/2016006
|
9 |
Tang Y H , Tang X W . The queue-length distribution for $M^X/G/1$ queue with single server vacation. Acta Mathematica Scientia, 2000, 20B (3): 397- 408
|
10 |
骆川义, 唐应辉, 刘仁彬. 多级适应性休假$M^X/G/1$排队系统的队长分布. 系统科学与数学, 2007, 27 (6): 899- 907
doi: 10.3969/j.issn.1000-0577.2007.06.011
|
|
Luo C Y , Tang Y H , Liu R B . The queue length distribution of $M^X/G/1$ with adartive mulitistage vacation. Journal of Systems Science & Mathematical Sciences, 2007, 27 (6): 899- 907
doi: 10.3969/j.issn.1000-0577.2007.06.011
|
11 |
Tang Y H . The departure process of the $M/G/1$ queueing model with server vacation and exhaustive service discipline. J of Applied Probability, 1994, 31 (4): 1070- 1082
doi: 10.2307/3215330
|
12 |
Tang Y H , Yun X , Huang S J . Discrete-time queue with unreliable server and multiple adaptive delayed vacation. J of Computational and Applied Mathematics, 2008, 220 (3): 439- 455
|
13 |
Yu M M , Tang Y H , Fu Y H , Pan L M . $GI/Geom/1/MWV$ queue with changeover time and searching for the optimum service rate in working vacation period. J of Computational and Applied Mathematics, 2011, 235 (8): 2170- 2184
doi: 10.1016/j.cam.2010.10.013
|
14 |
Luo C Y , Tang Y H . The recursive solution for $Geom/G/1(E, SV)$ queue with feedback and single server vacation. Acta Mathematicae Applicatae Sinica, 2011, 27 (1): 155- 166
doi: 10.1007/s10255-011-0049-y
|
15 |
Luo C Y , Tang Y H , Chao B S , Xiang K L . Performance analysis of a discrete-time $Geo/G/1$ queue with randomized vacations and at most J vacations. Applied Mathematics Modelling, 2013, 37 (9): 6489- 6504
doi: 10.1016/j.apm.2013.01.033
|
16 |
Lan S J , Tang Y H , Yu M M . System capacity optimization design and optimal threshold $N^*$ for a $Geo/G/1$ discrete-time queue with single server vacation and under the control of ${\rm Min}(N, V)$-policy. Journal of Industrial & Management Optimization, 2016, 12 (4): 1435- 1464
|
17 |
Gu J X , Wei Y Y , Tang Y H , Yu M M . Queue size distribution of $Geo/G/1$ queue under the ${\rm Min}(N, D)$-policy. J of Systems Science and Complexity, 2016, 29 (3): 752- 771
doi: 10.1007/s11424-016-4180-y
|
18 |
井彩霞, 崔颖, 田乃硕. ${\rm Min}(N, V)$ -策略休假的$M/G/1$排队系统分析. 运筹与管理, 2006, 15 (3): 53- 58
doi: 10.3969/j.issn.1007-3221.2006.03.011
|
|
Jing C X , Cui Y , Tian N S . Analysis of the $M/G/1$ queueing system with ${\rm Min}(N, V)$-policy. Operations Research & Management Science, 2006, 15 (3): 53- 58
doi: 10.3969/j.issn.1007-3221.2006.03.011
|
19 |
唐应辉, 吴文青, 刘云颇, 刘晓云. 基于多重休假的${\rm Min}(N, V)$ -策略$M/G/1$排队系统的队长分布. 系统工程理论与实践, 2014, 34 (6): 1533- 1546
|
|
Tang Y H , Wu W Q , Liu Y P , Liu X Y . The queue length distribution of $M/G/1$ queueing system with ${\rm Min}(N, V)$-policy based on multiple server vacations. Systems Engineering-Theory & Practice, 2014, 34 (6): 1533- 1546
|
20 |
唐应辉, 吴文青, 刘云颇. 基于单重休假的${\rm Min}(N, V)$ -策略$M/G/1$排队系统分析. 应用数学学报, 2014, 37 (6): 976- 996
|
|
Tang Y H , Wu W Q , Liu Y P . Analysis of $M/G/1$ queueing system with ${\rm Min}(N, V)$-policy based on single server vacation. Acta Mathematicae Applicatae Sinica, 2014, 37 (6): 976- 996
|
21 |
蒋书丽, 唐应辉. 具有多级适应性休假和${\rm Min}(N, V)$ -策略控制的$M/G/1$排队系统. 系统科学与数学, 2017, 37 (8): 1866- 1884
|
|
Jiang S L , Tang Y H . $M/G/1$ queueing system with multiple adaptive vacations and ${\rm Min}(N, V)$-policy. Journal of Systems Science & Mathematical Sciences, 2017, 37 (8): 1866- 1884
|
22 |
高丽君, 唐应辉. 具有${\rm Min}(N, D)$ -策略控制的$M/G/1$可修排队系统及最优控制策略. 数学物理学报, 2017, 37A (2): 352- 365
|
|
Gao L J , Tang Y H . $M/G/1$ repairable queueing system and optimal control policy with ${\rm Min}(N, D)$-policy. Acta Mathematica Scientia, 2017, 37A (2): 352- 365
|
23 |
蔡晓丽, 唐应辉. 具有温储备失效特征和单重休假${\rm Min}(N, V)$ -控制策略的$M/G/1$可修排队系统. 应用数学学报, 2017, 40 (5): 702- 726
|
|
Cai X L , Tang Y H . $M/G/1$ repairable queueing system with warm standby failure and ${\rm Min}(N, V)$-policy based on single vacation. Acta Mathematicae Applicatae Sinica, 2017, 40 (5): 702- 726
|
24 |
Lee H W , Seo W J . The performance of the $M/G/1$ queue under the dyadic ${\rm Min}(N, D)$-policy and its cost optimization. Performance Evaluation, 2008, 65 (10): 742- 758
doi: 10.1016/j.peva.2008.04.006
|
25 |
Lee H W , Seo W J , Lee S W , Jeon J . Analysis of the $MAP/G/1$ queue under the ${\rm Min}(N, D)$-policy. Stochastic Models, 2010, 26 (1): 98- 123
doi: 10.1080/15326340903517121
|
26 |
魏瑛源, 唐应辉, 等. 基于${\rm Min}(N, D)$ -策略的$M/G/1$排队系统的队长分布及最优策略. 系统科学与数学, 2015, 35 (6): 729- 744
|
|
Wei Y Y , Tang Y H , et al. Queue length distribution and optimum policy for $M/G/1$ Queueing system under ${\rm Min}(N, D)$-policy. Journal of Systems Science & Mathematical Sciences, 2015, 35 (6): 729- 744
|
27 |
罗乐, 唐应辉. 具有${\rm Min}(N, D, V)$ -策略控制的$M/G/1$排队系统. 运筹学学报, 2019, 23 (2): 1- 16
|
|
Luo L , Tang Y H . $M/G/1$ queueing system with ${\rm Min}(N, D, V)$-policy control. Journal of Operations Research, 2019, 23 (2): 1- 16
|
28 |
王敏, 唐应辉. 基于${\rm Min}(N, D, V)$ -策略和单重休假的$M/G/1$排队系统的最优控制策略. 系统科学与数学, 2018, 38 (9): 1067- 1084
|
|
Wang M , Tang Y H . Optimal control policy of $M/G/1$ queueing system based on ${\rm Min}(N, D, V)$-policy and single server vacation. Journal of Systems Science & Mathematical Sciences, 2018, 38 (9): 1067- 1084
|
29 |
唐应辉, 毛勇. 服务员假期中以概率$p$进入的$M/G/1$排队系统的随机分解. 数学物理学报, 2004, 24 (6): 683- 688
|
|
Tang Y H , Mao Y . The stochastic decomposition for $M/G/1$ queue with $ p$-entering discipline during server vacations. Acta Mathematica Scientia, 2004, 24 (6): 683- 688
|
30 |
骆川义, 唐应辉. 假期中以概率$p$进入的单重休假$M/G/1$排队. 应用数学, 2006, 19 (2): 246- 251
|
|
Luo C Y , Tang Y H . The $M/G/1$ queue with $p$-entering discipline during single server vacation. Mathematic Application, 2006, 19 (2): 246- 251
|
31 |
李才良, 唐应辉, 牟永聪, 等. 在第二类故障期间以概率$p$进入的$M/G/1$可修排队系统. 数学物理学报, 2012, 32A (6): 1149- 1157
|
|
Li C L , Tang Y H , Mu Y C , et al. $M/G/1$ repairable queueing system with $p$-entering discipline during second type failure times. Acta Mathematica Scientia, 2012, 32A (6): 1149- 1157
|
32 |
刘云颇, 唐应辉. 多重假期中以概率$p$进入的$M/G/1$可修排队系统. 系统工程学报, 2011, 26 (5): 718- 724
|
|
Liu Y P , Tang Y H . $M/G/1$ repairable queueing system with $p$-entering discipline during server vacation. Journal of Systems Engineering, 2011, 26 (5): 718- 724
|
33 |
骆川义, 唐应辉. 具有可变到达率的多重休假$Geo^{\lambda_1, \lambda_2}/G/1$排队分析. 数学学报, 2010, 53 (4): 805- 816
|
|
Luo C Y , Tang Y H . Analysis of a multi-vacation $Geo^{\lambda_1, \lambda_2}/G/1$ queue with variable arrival rate. Acta Mathematic Sinica, 2010, 53 (4): 805- 816
|
34 |
Luo C Y , Xiang K L , Yu M M , Tang Y H . Recursive solution of queue length distribution for $Geo/G/1$ queue with single server vacation and variable input rate. Computers and Mathematics with Applications, 2011, 61 (9): 2401- 2411
doi: 10.1016/j.camwa.2011.02.018
|
35 |
Wei Y Y , Yu M M , Tang Y Y , Gu J X . Queue size distribution and capacity optimum design for $N$-policy $Geo^{\lambda_1, \lambda_2, \lambda_3}/G/1$ queue with setup time and variable input rate. Mathematical and Computer Modelling, 2013, 57 (5/6): 1559- 1571
|
36 |
Luo C Y , Tang Y H , Yu K Z , Ding C . Optimal $(r, N)$ -policy for discrete-time $Geo/G/1$ queue with different input rate and setup time. Applied Stochastic Models in Business & Industry, 2015, 31 (4): 405- 423
|
37 |
Lan S J , Tang Y H . Analysis of a discrete-time $Geo^{\lambda_1, \lambda_2}/G/1$ queue with $N$-policy and $D$-policy. Journal of Applied Mathematics and Computing, 2017, 53 (1/2): 657- 681
|
38 |
唐应辉, 唐小我. 排队论-基础与分析技术. 北京: 科学出版社, 2006
|
|
Tang Y H , Tang X W . Queueing Theory-Foundations and Analysis Techniques. Beijing: Science Press, 2006
|