Hui Zhang,Juan Xu. Regularity Criteria for the NS and MHD Equations in Terms of Horizontal Components[J]. Acta mathematica scientia,Series A, 2019, 39(5): 1136-1145.
Leray J . Sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Math, 1934, 63 (1): 193- 248
2
Hopf E . Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math Nachr, 1951, 4: 213- 231
3
Serrin J . On the interior regularity of weak solutions of the Navier-Stokes equations. Arch Rat Mech Anal, 1962, 9: 187- 191
doi: 10.1007/BF00253344
4
Beirao da Veiga . A new regularity class for the Navier-Stokes equations in ${{\mathbb{R}}^n}$. Chinese Ann Math, 1995, 16: 407- 412
doi: 10.1016/0169-7439(95)00032-3
5
Beirao da Veiga . On the smoothness of a class of weak solutions to the Navier-Stokes equation. J Math Fluid Mech, 2000, 2: 315- 323
doi: 10.1007/PL00000955
6
Dong B Q , Chen Z M . Regularity criterion of weak solutions to the 3D Navier-Stokes equations via two velocity componenets. J Math Anal Appl, 2008, 338: 1- 10
doi: 10.1016/j.jmaa.2007.05.003
Zhang H . Regularity criteria for the 3D Navier-Stokes equations in Morrey-Campanato space. Pure and Applied Mathematcis, 2013, 29 (2): 140- 145
8
Duvaut G , Lions J L . Inquations en thermolasticit et magnetohydrodynamique. Arch Ration Mech Anal, 1972, 46: 241- 279
doi: 10.1007/BF00250512
9
He C , Xin Z . On the regularity of weak solutions to the magnetohydrodynamic equations. J Differential Equations, 2005, 213: 235- 254
doi: 10.1016/j.jde.2004.07.002
10
Ni L D , Guo Z G , Zhou Y . Some new regularity criterion for the 3D MHD equations. J Math Anal Appl, 2012, 396: 108- 118
doi: 10.1016/j.jmaa.2012.05.076
11
Ji E , Lee J . Some regularity criterion for the 3D incompressible magnetohydrodynamics. J Math Anal Appl, 2010, 369: 317- 322
doi: 10.1016/j.jmaa.2010.03.015
12
Dong B Q , Zhang B Q . The BKM criterion for the 3D Navier-Stokes equations via two velocity components. Nonlinear Analysis:Real World Application, 2010, 11: 2415- 2421
doi: 10.1016/j.nonrwa.2009.07.013
13
Triebel H . Theory of Function Space. Boston: Birkhäuser, 1983
14
Chen Q L , Miao C X , Zhang Z F . On the well-posedness of the ideal MHD equations in the Triebel-Lizorkin spaces. Arch Rational Mech Anal, 2010, 195: 561- 578
doi: 10.1007/s00205-008-0213-6
15
Lemarié-Rieusset , Gala S . Multipliers between Sobolev spaces and frational differentiation. J Math Anal Appl, 2006, 322: 1030- 1054
doi: 10.1016/j.jmaa.2005.07.043