数学物理学报 ›› 2019, Vol. 39 ›› Issue (5): 1125-1135.
收稿日期:
2018-07-20
出版日期:
2019-10-26
发布日期:
2019-11-08
通讯作者:
张秋月
E-mail:qyzhang0722@163.com
Received:
2018-07-20
Online:
2019-10-26
Published:
2019-11-08
Contact:
Qiuyue Zhang
E-mail:qyzhang0722@163.com
摘要:
该文考虑了三维共旋情形下,带有分数阶耗散(-△)η1u和(-△)η2τ的广义不可压缩Oldroyd-B模型.假设初始数据(u0,τ0)充分光滑,若耗散指标η1 ≥ 5/4,η2 ≥ 5/4,利用能量方法,得到了方程组经典解的整体正则性.
中图分类号:
张秋月. 带有分数阶耗散的三维广义Oldroyd-B模型的整体正则性[J]. 数学物理学报, 2019, 39(5): 1125-1135.
Qiuyue Zhang. Global Regularity for 3D Generalized Oldroyd-B Type Models with Fractional Dissipation[J]. Acta mathematica scientia,Series A, 2019, 39(5): 1125-1135.
1 |
Oldroyd J G . Non-Newtonian effects in steady motion of some idealized elastico-viscous liqids. Proc Roy Soc Lond Ser A, 1958, 245: 278- 297
doi: 10.1098/rspa.1958.0083 |
2 | Bird R B , Curtiss C F , Armstrong R C , Hassager O . Dynamics of Polymeric Liquids, Vol 1:Fluid Mechanics. 2nd ed New York: Wiley, 1987 |
3 | Lin F , Liu C , Zhang P . On hydrodynamics of viscoelastic fluids. Comm Pure Appl Math, 2005, 51: 1437- 1471 |
4 |
Guillopé C , Saut J C . Existence results for the flow of viscoelastic fluids with a differential constitutive law. Nonlinear Anal, 1990, 15: 849- 869
doi: 10.1016/0362-546X(90)90097-Z |
5 |
Guillopé C , Saut J C . Global existence and one-dimensional nonlinear stability of shearing motions of viscoelastic fluids of Oldroy type. RAIROMod él Math Anal Num ér, 1990, 24: 369- 401
doi: 10.1051/m2an/1990240303691 |
6 | Chemin J Y , Masmoudi N . About lifespan of regular solutions of equations related to viscoelastic fluids. SIAM J Math Anal, 2006, 33: 84- 112 |
7 |
Chen Q , Miao C . Global well-posedness of viscoelastic fluids of Oldroyd type in Besov spaces. Nonlinear Anal, 2008, 68: 1928- 1939
doi: 10.1016/j.na.2007.01.042 |
8 |
Constantin P , Sun W . Remarks on Oldroyd-B and related complex fluid models. Commun Math Sci, 2012, 10: 33- 73
doi: 10.4310/CMS.2012.v10.n1.a3 |
9 |
Fang D , Hieber M , Zi R . Global existence results for Oldroyd-B fluids in exterior domains:the case of non-small coupling parameters. Math Ann, 2013, 357: 687- 709
doi: 10.1007/s00208-013-0914-5 |
10 |
Fang D , Zi R . Global solutions to the Oldroyd-B model with a class of large initial data. SIAM J Math Anal, 2016, 48: 1054- 1084
doi: 10.1137/15M1037020 |
11 |
Hieber M , Naito Y , Shibata Y . Global existence results for Oldroyd-B fluids in exterior domains. J Differ Equ, 2012, 252: 2617- 2629
doi: 10.1016/j.jde.2011.09.001 |
12 |
Lei Z . On 2D viscoelasticity with small strain. Arch Ration Mech Anal, 2010, 198: 13- 37
doi: 10.1007/s00205-010-0346-2 |
13 |
Lei Z , Liu C , Zhou Y . Global existence for a 2D incompressible viscoelastic model with small strain. Commun Math Sci, 2007, 5: 595- 616
doi: 10.4310/CMS.2007.v5.n3.a5 |
14 |
Zi R , Fang D , Zhang T . Global solution to the incompressible Oldroyd-B model in the critical Lp framework:the case of the non-small coupling parameters. Arch Ration Mech Anal, 2014, 213: 651- 687
doi: 10.1007/s00205-014-0732-2 |
15 |
Lions P L , Masmoudi N . Global solutions for some Oldroyd models of non-Newtonian flows. Chinese Ann Math Ser B, 2000, 21: 131- 146
doi: 10.1142/S0252959900000170 |
16 |
Elgndi T M , Rousset F . Global regularity for some Oldroyd type models. Comm Pure Appl Math, 2015, 68 (11): 2005- 2021
doi: 10.1002/cpa.21563 |
17 |
Elgndi T M , Liu J . Global wellposedness to the generalized Oldroyd type models in ${{\mathbb{R}}^3}$. J Diffrential Equations, 2015, 259: 1958- 1966
doi: 10.1016/j.jde.2015.03.026 |
18 |
Constantin P , Kliegl M . Note on global regularity for two-dimensional Oldroyd-B fluids with diffusive stress. Arch Ration Mech Anal, 2012, 206: 725- 740
doi: 10.1007/s00205-012-0537-0 |
19 |
Masmoudi N . Global existence of weak solutions to the FENE dumbbell model of polymeric flows. Invent Math, 2013, 191: 427- 500
doi: 10.1007/s00222-012-0399-y |
20 |
Qian J . Well-posedness in critical spaces for incompressible viscoelastic fluid system. Nonlinear Anal, 2010, 72: 3222- 3234
doi: 10.1016/j.na.2009.12.022 |
21 |
Sun Y , Zhang Z . Global well-posedness for the 2D micro-macro models in the bounded domain. Comm Math Phys, 2011, 303: 361- 383
doi: 10.1007/s00220-010-1170-0 |
22 | Zhang T, Fang D. Global well-posedness for the incompressible viscoelastic fluids in the critical Lp framework. 2011, arXiv: 1101.5864v2[math.AP] |
23 |
Wu J . Generalized MHD equations. J Differential Equations, 2003, 195: 284- 312
doi: 10.1016/j.jde.2003.07.007 |
24 | Wan R . Global regularity for generalized Hall magneto-hydrodynamics systems. Electron J Differential Equations, 2015, 179: 1- 18 |
25 | Wan R. Global well-posedness to the subcritical Oldroyd-B type models in 2D. 2015, arXiv: 1509.07663v2[math.AP] |
26 |
Yang W , Jiu Q , Wu J . The 3D incompressible magnetohydrodynamic equations with fractional partial dissipation. J Differential Equations, 2019, 266 (1): 630- 652
doi: 10.1016/j.jde.2018.07.046 |
27 |
Kato T , Ponce G . Commutator estimates and the Euler and Navier-Stokes equations. Commun Pure Appl Math, 1988, 41: 891- 907
doi: 10.1002/cpa.3160410704 |
28 | Majda A J , Bertozzi A L . Vorticity and Incopressible Flow. Cambrige: Cambrige University Press, 2001 |
29 |
Bony J M . Calcul symbolique et propagation des sigularites pour les equations aux derivees partielles non lineaires. Ann Sci Ecole Norm Sup, 1981, 14: 209- 246
doi: 10.24033/asens.1404 |
30 | Chemin J Y . Perfect Incompressible Fluids. New York: Clarendon Press, 1998 |
[1] | 吴杰,林红霞. 关于抛物-抛物Keller-Segel类模型的全局解和渐近性[J]. 数学物理学报, 2019, 39(5): 1102-1114. |
[2] | 王娜,王术. 平面平行管道中的MHD方程组的边界层[J]. 数学物理学报, 2019, 39(4): 738-760. |
[3] | 李凯,杨晗,王凡. 三维带有衰减项的不可压缩磁流体力学方程组弱解与强解的研究[J]. 数学物理学报, 2019, 39(3): 518-528. |
[4] | 张雪,孙峪怀. 广义的(3+1)维Kadomtsev-Petviashvili方程的动力分析及其行波解[J]. 数学物理学报, 2019, 39(3): 501-509. |
[5] | 钟澎洪,杨干山,马璇. 双曲空间上的Landau-Lifshitz-Gilbert方程解的全局存在性与自相似爆破解[J]. 数学物理学报, 2019, 39(3): 461-474. |
[6] | 韩祥临,汪维刚,莫嘉琪. 一类非线性微分-积分时滞反应扩散系统奇摄动问题的广义解[J]. 数学物理学报, 2019, 39(2): 297-306. |
[7] | 杨延冰,连伟,黄少滨,徐润章. 具广义非线性源的波动方程的高能爆破[J]. 数学物理学报, 2018, 38(6): 1239-1244. |
[8] | 郑琳,王术,李林锐. 三维流体-粒子相互作用模型:Flowing Regime模型的局部解问题[J]. 数学物理学报, 2018, 38(6): 1173-1192. |
[9] | 王文波,李全清. 变号深阱位势分数阶Schrödinger方程非平凡解的存在性和集中性[J]. 数学物理学报, 2018, 38(5): 893-902. |
[10] | 赵元章, 马相如. 一类具有变扩散系数的非局部反应-扩散方程解的爆破分析[J]. 数学物理学报, 2018, 38(4): 750-769. |
[11] | 邵光明, 柴晓娟. Navier-Stokes-Fourier方程的可压逼近[J]. 数学物理学报, 2017, 37(6): 1070-1084. |
[12] | 李华惠, 邵志强. 压力消失时具有广义Chaplygin气体的Aw-Rascle交通模型Riemann解的极限[J]. 数学物理学报, 2017, 37(5): 917-930. |
[13] | 刘世芳, 马巧珍. 具有历史记忆的阻尼吊桥方程强全局吸引子的存在性[J]. 数学物理学报, 2017, 37(4): 684-697. |
[14] | 李华惠, 邵志强. 用分离的Delta函数法研究非对称Keyfitz-Kranzer系统中Delta激波的交互性[J]. 数学物理学报, 2017, 37(4): 714-729. |
[15] | 邱华, 张颖姝, 房少梅. 不可压粘弹性流体的Leray-α-Oldroyd模型整体解的存在性[J]. 数学物理学报, 2017, 37(1): 102-112. |
|