1 |
Alves C O , Corrêa F J S A , Figueiredo G M . On a class of nonlocal elliptic problems with critical growth. Differential Equation and Applications, 2010, 2 (3): 409- 417
|
2 |
Ambrosetti A , Rabinowitz P H . Dual variational methods in critical point theory and applications. J Funct Anal, 1973, 14 (4): 349- 381
doi: 10.1016/0022-1236(73)90051-7
|
3 |
Benmansour S , Bouchekif M . Nonhomogeneous elliptic problems of Kirchhoff type involving critical Sobolev exponents. Electronic Journal of Differential Equations, 2015, 2015 (69): 1- 11
|
4 |
Brézis H , Nirenberg L . Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm Pure Appl Math, 1983, 36 (4): 437- 477
doi: 10.1002/cpa.3160360405
|
5 |
丁瑶, 廖家锋. 一类带临界指数的非齐次Kirchhoff型问题正解的存在性. 西南师范大学学报:自然科学版, 2015, 40 (12): 17- 21
|
|
Ding Y , Liao J F . Existence of positive solutions for a class of nonhomogeneous Kirchhoff type problems with critical exponent. J Southwest China Normal Univ(Natural Science Edition), 2015, 40 (12): 17- 21
|
6 |
Fiscella A , Valdinoci E . A critical Kirchhoff type problem involving a nonlocal operator. Nonlinear Anal, 2014, 94: 156- 170
doi: 10.1016/j.na.2013.08.011
|
7 |
Huang Y S , Liu Z , Wu Y Z . On finding solutions of a Kirchhoff type problem. Proc Amer Math Soc, 2016, 144 (7): 3019- 3033
|
8 |
Huang Y S , Liu Z , Wu Y Z . On Kirchhoff type equations with critical Sobolev exponent. J Math Anal Appl, 2018, 462 (1): 483- 503
doi: 10.1016/j.jmaa.2018.02.023
|
9 |
Lei C Y , Liu G S , Guo L T . Multiple positive solutions for a Kirchhoff type problem with a critical nonlinearity. Nonlinear Anal Real World Appl, 2016, 31: 343- 355
doi: 10.1016/j.nonrwa.2016.01.018
|
10 |
Li H Y , Liao J F . Existence and multiplicity of solutions for a superlinear Kirchhoff-type equations with critical Sobolev exponent in ${\Bbb R^{\Bbb N}}$. Comput Math Appl, 2016, 72 (12): 2900- 2907
doi: 10.1016/j.camwa.2016.10.017
|
11 |
廖家锋, 李红英. 带Sobolev临界指数的超线性Kirchhoff型方程正解的存在性与多解性. 数学物理学报, 2017, 37
doi: 10.3969/j.issn.1003-3998.2017.06.011
|
|
Liao J F , Li H Y . Existence and multiplicity of positive solutions for the superlinear Kirchhoff-type equations with critical Sobolev exponent. Acta Mathematica Scientia, 2017, 37A (6): 1119- 1124
doi: 10.3969/j.issn.1003-3998.2017.06.011
|
12 |
Liao J F , Li H Y , Zhang P . Existence and multiplicity of solutions for a nonlocal problem with critical Sobolev exponent. Comput Math Appl, 2018, 75 (3): 787- 797
doi: 10.1016/j.camwa.2017.10.012
|
13 |
Liu X , Sun Y J . Existence of positive solutions for Kirchhoff type problems with critical exponent. J Part Diff Eq, 2012, 25 (2): 85- 96
|
14 |
Naimen D . Positive solutions of Kirchhoff type elliptic equations involving a critical Sobolev exponent. NoDEA Nonlinear Differential Equations Appl, 2014, 21 (6): 885- 914
doi: 10.1007/s00030-014-0271-4
|
15 |
Naimen D . On the Brezis-Nirenberg problem with a Kirchhoff type perturbation. Adv Nonlinear Stud, 2015, 15 (1): 135- 156
|
16 |
Rudin W. Real and Complex Analysis. New York:McGraw-Hill, 1966
|
17 |
Willem M. Minimax Theorems. Boston:Birkhauser, 1996
|
18 |
Xie Q L , Wu X P , Tang C L . Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent. Commun Pure Appl Anal, 2013, 12 (6): 2773- 2786
doi: 10.3934/cpaa.2013.12.2773
|